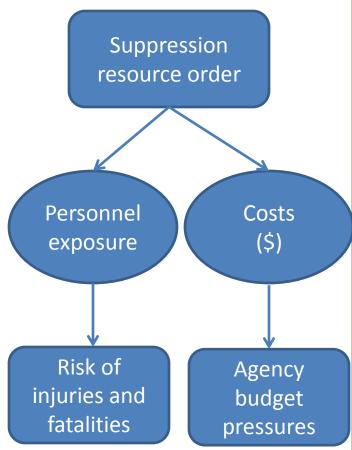
The Influence of Incident Management Teams on Suppression Resource Use

Michael S. Hand, RMRS

Co-authors: Hari Katuwal, UMT College of Forestry David E. Calkin, RMRS

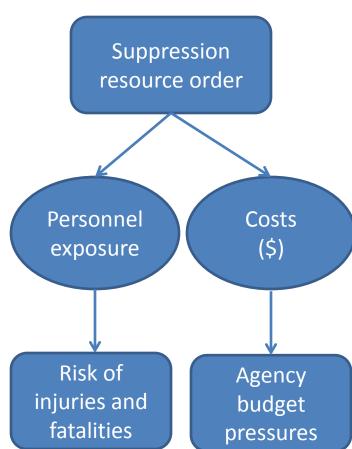
National Fire Decision Support Center

Large Fire Conference, Missoula, MT, May 22, 2014


Two difficult problems of wildfire management

- High suppression costs threaten public agency budgets
 - Many human factors
 - Difficult to align incentives to constrain costs

- Exposure of personnel to risks
 - Engaging fire involves risk of injuries and fatalities (travel, exertion, accidents, burn-overs)


Two difficult problems of wildfire management

- Both problems stem from decisions to order suppression resources, and use them to engage fire
 - Resources cost money
 - Boots on the ground involves risk

Two difficult problems of wildfire management

- Both problems stem from decisions to order suppression resources, and use them to engage fire
 - Resources cost money
 - Boots on the ground involves risk
- But you can't manage fire without resources

Examining resource orders

- What factors drive decisions about resource orders?
- A few hypotheses:
 - Fire potential and characteristics
 - Socio-political influences
 - Individual management preferences and risk attitudes

Examining resource orders

- We look at determinants of daily resource orders, and the role of individual teams in explaining orders
- Examine fireline production capacity
 - Calculate daily production capacity from lineproducing resources (crews, engines, dozers, heli)
 - Observe how ordered production capacity varies with fire characteristics, between different IMTs
 - Regress production capacity on daily characteristics, IMT fixed effects

Panel data of IMTs and resource orders

- IMTs: Identify unique incident management teams
 - Include Type 1 (T1), Type 2 (T2), Fire Use Mgmt (FUMT), Wildland Fire Mgmt (WFMT), and NIMO teams (90 teams)
- Incidents: Identify all incidents where one of the team types were assigned (299 fires, FY 2007 – FY 2011)
- Resources: Gather all resource orders from ROSS (federal resources only) for IMT assignment days (3,439 assignment days)

Data summary

Panel data observations	
Number of incidents	299
Number of assignment days	3,439
Assignment days by team type	
T1	949
T2	2,183
NIMO	113
WFMT	26
FUMT	168
Avg. # assignments per team	4.74
Avg. # days per assignment	8.47

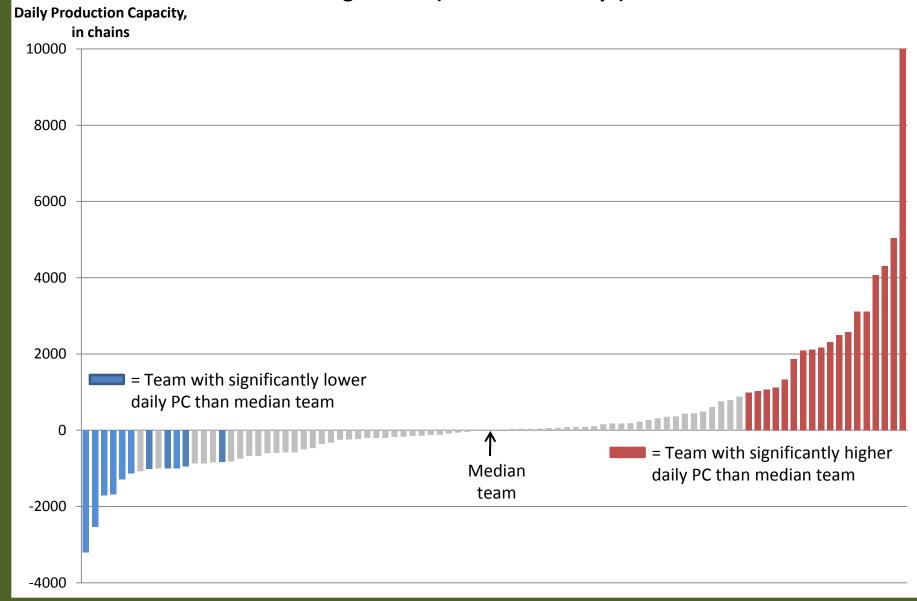
• Also include daily reported characteristics from ICS-209 forms: Growth potential, size, percent contained

Data summary

- Measuring production capacity (dep. variable)
 - Calculate potential line production for all resources based on Broyles (2011)

DESCRIPTION	PRODUCTION CAPACITY (PC), CHAINS/DAY	
	In timber fuels	In brush or grass fuels
TYPE 1 CREW	52.3	61.6
TYPE 1 CREW – STRIKE TEAM	104.5	123.2
TYPE 2 CREW	28.0	32.7
TYPE 2 CREW – STRIKE TEAM	56.0	65.4
FIREFIGHTER – SINGLE RESOURCE	1.4	1.6
TYPE 1 HELICOPTER	36.0	36.0
TYPE 2 HELICOPTER	24.0	24.0
TYPE 3 HELICOPTER	12.0	12.0
ENGINE	21.0	21.0
ENGINE – STRIKE TEAM	105.0	105.0
DOZER	120.0	120.0
DOZER – STRIKE TEAM	240.0	240.0

Results – Reported fire characteristics


Variable	Coefficient (units = chains per day)
Growth potential = Extreme	931.4
Growth potential = High	380.6
Growth potential = Moderate	170.0
% contained	5,956
% contained ^ 2	-5,419
Fire size	.013

Rows in boldface indicate significance at 95% level.

 Resource orders match assessment of fire behavior

- Very small effect of fire size
- Increasing orders as containment goes up, but drawdown of resources as fire nears containment

Daily Production Capacity: Team Fixed Effects, excluding short assignments (fewer than 3 days)

Results – Inherited resources and assignment length

Variable	Coefficient (units = chains per day)
Inherited prod. cap.	.473
Team assignment day	2.20
Inherited x assign. day	065

Rows in boldface indicate significance at 95% level.

 Previous team's order has significant but very small persistence

 Persistence effect dissipates over time

Results – Team type, assignment order, and duration effects

Variable	Coefficient (units = chains per day)	
Second team	-614.4	
Third team	-961.5	
Fourth team	-666.9	
Fifth team	-626.3	
Relative duration (0-1 scale)	-1,894	
NIMO team type	-1,685	
Rows in boldface indicate significance at 95% level.		

- Fewer resources ordered after the first team assignment
- Overall drawdown of resources over the course of the fire
- NIMO teams order fewer resources compared to T1 and T2 teams

Summary

- The IMT assigned to a fire can have a big impact on resources ordered
 - Could be other unobserved factors associated with IMTs
 - Don't know what ordered resources are used for or how effective they are
- Timing and order of IMT assignment matters

 Could matter during times of resource scarcity
- Need to better understand IMT expectations: Are they responding to expected conditions (rather than current)?

Thank you!

• Questions?

Michael Hand <u>mshand@fs.fed.us</u> (406) 329-3375