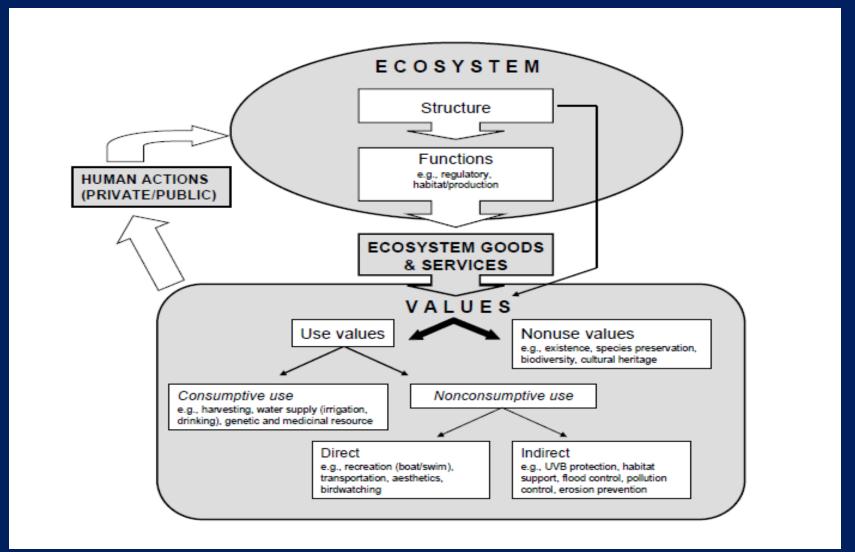
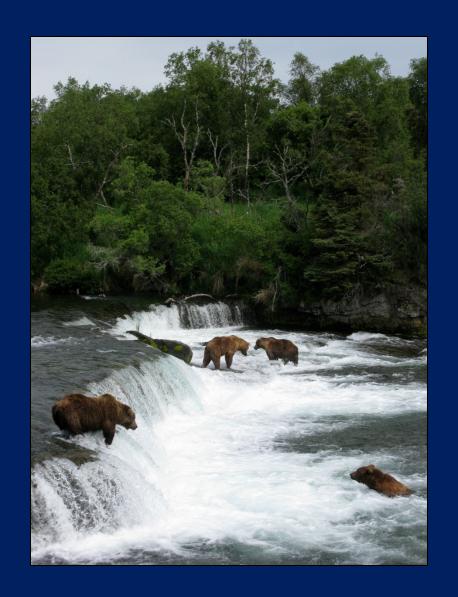


Ecosystem Conservation


- Holistic approach: Preservation and Ecological Restoration
- Improves ecosystem services, but how do we value them?

Simple Diagram of Ecosystem Service Values

Ecosystem Service Values


Source: National Research Council of the National Academies (2004)

Non-Market Valuation

Revealed and Stated Preference Methods

Contingent Valuation (WTP)

Evolution to Choice Modeling

Meta Hypotheses

Conservation Type:

 H_{01} : $\beta_1 = \beta_2 = \beta_3$; where β_x = coefficient for WTP for three types of conservation (forest restoration, freshwater restoration, and preservation)

Conservation amount, or Scope:

 H_{02} : $β_4 < β_5 < β_6$; where $β_x$ = coefficient for WTP for three levels of conservation (attribute-specific, program low, program high)

Conservation Scope?

- Scope and Embedding Effects
- Commodity and Temporal Scope Effects
- Primary argument against CVM validation
- Ideological values vs. utility maximization

Model Specification

Model Specification:

$$\star WTP_{ii} = F([ESS_1 - ESS_0], C, V)$$

Eq.- 1

$$*WTP_{ij} = F(T, S, C, V)$$

Eq.- 2

Type, Scope, Context, and Valuation of Conservation

Data Selection

- Data Heterogeneity
 - Commodity consistency
 - Welfare change measure consistency
- Limited to preservation and/or restoration on:
 - Forest and freshwater ecosystems
 - Primarily on public lands
- Elicitation format = DCCV, CE, and CR
- Mean or median WTP per household or individual.

Independent Variables

- Type (preservation, forest restoration, freshwater restoration)
- Scope (attribute-specific, program low, program high)
- Context (time trend, country, income)
- Valuation (sample size, elicitation format, payment vehicle, payment frequency)

WTP Primary Data

- 127 WTP estimates collected from 22 primary studies using DCCV, CR, and CE
- Studies from Europe, Canada, and US from 1987 to 2013
- WTP in \$2010 US equivalent prices, using country-specific CPI and Penn purchasing power parity

Meta-Regression Estimation

- Correlated data due to multiple observations (nested) from same authors
- Required a multilevel model (MLM)
- Competing models based on fit criteria of R-squared, AIC, BIC, and log-likelihood
- Semilog and log linear were final models

Meta-Regression Results

	Semilog			Log linear		
	Coef.	Robust Std. Err.	P> z	Coef.	Robust Std. Err.	P> z
Conservation type (T)						
Forest restoration (β_1)	-1.083	0.363	0.003	-1.054	0.388	0.007
Freshwater restoration (β_2)	-0.642	0.335	0.055	-0.557	0.329	0.091
Conservation scope (S)						
Program low (β_5)	1.348	0.356	0.000	1.382	0.388	0.000
Program high (β_6)	1.703	0.618	0.006	1.764	0.654	0.007

Within-Sample Predictions (Mean WTP and 95% CIs)

	~	Levels				
Type of conservation effort (T)	Scope of effort (S)	Mean	Low	High		
Forest restoration	Attribute	\$11.54	5.18	25.72		
	Program low	\$44.41				
	Program high	\$63.33	26.76	73.69		
Freshwater restoration			29.06	138.02		
	Attribute	\$17.94	8.54	37.67		
	Program low	\$69.03	30.90	154.19		
	Program high	\$98.45	34.33	282.33		
Preservation	Attribute	\$34.07	21.92	52.96		
	Program low	\$131.12	80.93	212.44		
	Program high	\$187.01	64.48	542.37		

Conservation Type

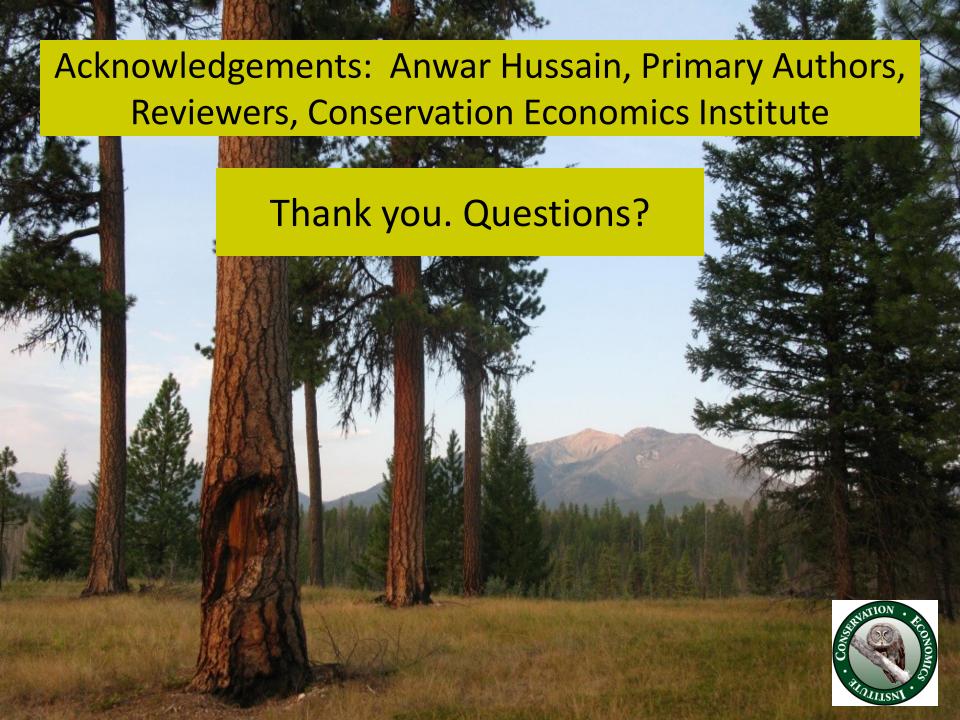
- Starting point bias?
- Endowment effects?
- Scarcity?
- Intervention level?
- Differing opportunity costs?
- And why freshwater restoration over forest restoration?

Conservation Scope

- Scope effects and the evolution of Choice Modeling in economics
- ❖ Absolute versus relative measures of scope

Conclusions

- Systematic variation in WTP for Type of conservation
- Conservation WTP is sensitive to Scope
- "Moral Satisfaction" and Ideological....still adhering to utility maximization and neoclassical economics



Value transfer and policy implications

Recommendations

- Conservation values behaving similarly to marketed goods
- Future research:
 - Relative measures for benefit transfer
 - Boosting sample size
 - Choice experiment features

