Quantifying Emissions Reductions for Ecosystem Restoration Projects in the BC Rocky Mountain Trench: Is Biomass Harvesting and Utilization the Answer?

> Tom Hobby SCR Management Inc.

Western Forest Economist Annual Meeting Missoula, Montana, May 19, 2014

Project Team and Funders

- Tom Hobby MBA, M.Sc., MA, P. Ag Project Lead, SCR Management Inc.
- Dan Murphy RPF, Coordinator, Rocky Mountain Trench Society
- Randy Harris RPF, MFLNRO Ecosystem Restoration Team Leader
- Mark Perdue RPF, DRSystems Inc.
- Cameron Stonestreet MA, Stonestreet and Associates
- Tim Ross P. Ag, M.Sc., Ross Range & Reclamation Services
- Laura Luxton MFLNRO
- Daniel Braun- MFLNRO
- Sarah Sinclair GSI Inc.

Rocky Mountain Trench Ecosystem Restoration Program

Restoring Nature's Balance.

2013 Research Objectives

- ER dbase development
- Literature review
- Mastication data collection
- Cost benefit mastication vs. traditional ER
- Model emissions
- Evaluate non-market benefits and costs

2014 Research Objectives

- Estimate biomass volumes for the ER planning area (81,000+ Ha)
- Compare mastication emissions vs. biomass harvesting
- Estimate biomass harvest costs

Traditional ER Methods

Smoke Issues

ER Program Objectives

Ecosystem Component	Tree Stocking Range/Stems/ha	1997 Distribution	2004 Distribution	2030 Target Ha <i>(%)</i>
Shrubland	0 sphno target	5%	1%	5,000 (5%)
Open Range	<75 sphtarget 20 sph	10%	12%	43,500 (17%)
Open Forest	<400 sphtarget 150 sph	85%*	26%	75,000 (30%)
Managed Forest	variedTarget 500-4000 sph	85%*	61%	119,000 (48%)

* Open and Managed forests were not disaggregated into each of their individual components in 1997.

ER Treatment Area

NDT 4 250,000+ ha in Trench

Open Forest <150 SPH Open Range <75 SPH Managed Forest <400 SPH

British Columbia

DAPTED FROM BIODIVERSITY GUIDEBOOK, 1995

SCR Management Inc.

ER Treatments by Type

Hectares treated over the 1999-2013 period

Type of	Total Hectares
Treatment	
Logging	11,135
Thinning	869
Slash and pile	16,120
Prescribed burn	14,731
Grass seed	1,775
Total	48,172

Mastication

Mastication is a mechanical means of small diameter tree removal whereby the wood is chopped/ground into a woody mulch cover; chips/chopped material is mostly less than 15" long and less than 3" diameter

Mastication

Before

Mastication Treatment Areas

Premier Ridge

Brewery Ridge

Data Collection

- Tree fixed radius plots
- Mulch depth- transects
- Slash pile measurements
- ER treatment costs
- Mastication treatment cost
- Mastication machine hours
- Forest Vegetation Resource Inventory

Methods - Mastication only

Methods - Biomass Utilization

Emissions Estimation Methods

Cruise:

Number of Regeneration, Advanced Regeneration and Pole tree stems are manually counted along with prism sweeps

Volume Calculation:

Basal area & cone formula, assuming volume per class and multiplied by number of stems per plot volume per plot is used

Net up Plot Volume to Hectare:

Using the volume calculations per plot these volumes are netted up to a volume per hectare.

Emissions Calculations:

A decision rules base on number of stems and volume per hectare determines treatment for the <15cm diameter class of either be slash &burned or mastication. An estimated emission factors per volume is applied to calculate the emissions per cruised hecatre.

Application to GIS Data:

The various cruised hectares are distributed to hectare type of either low, mid or high density stands. These classes of stands provide a representative profile that is then used across the entire study area to estimate emissions for a full treatment program.

ER Cost Results – Slashing

2009-2010

\$1,791/ha Ave. slashing costs

Cost Range \$300-9,500/ ha

ER Cost Results- Pile Burning

2009-2010

- Ave \$532/ha
- Range \$243-830/ha
- Seeding Ave \$77/ha
- Range \$40-120/ha

Pile Burning Costs \$/ha

ER Cost Results – Mastication Trials

E/R Treatment Unit	Year	Hectares Treated	Cost/Ha	Notes						
Brewery Ridge TUB	2011-2012	34.9	1,560	Very rocky and difficult for front mounted masticator. Fair results						
Brewery Ridge TU F	2011	4.4	\$4,000+	Very dense 20,000 stems per/ha and too dense of mulch						
Premier Ridge All Treatment units	2012	80+	\$1,800	Some rocky sections making mastication difficult, but cost effective						
Lackit Ridge	2013	13.7	\$1,759	Cost effective using excavator head						
Fussie Pasture	2013	14.1	\$1,800	Same as Lackit Ridge						
Totals		147.1	Range \$1,560- 4,000							
* Open and Managed forests were not disaggregated into each of their individual components in 1997.										

SCR Management Inc.

Aggregate Sawlog & Biomass Volume Estimates

derived from ER Prescription plots and linked with VRI dbase

SUMMARIZE CLASSES								
TREAMENT CLASS	VOL (M3) <12.5CM							
HAND_PILE	807,382							
SLASH&SCATTER	24,257							
HI_LOG	3,571,766							
LO_MAST	_							
MI_MAST	90							
TOTAL SAWLOG	4,403,496							

SUMMARIZE CLASSES							
TREAMENT CLASS	VOL (M3)Pole						
HAND_PILE	82,540						
SLASH&SCATTER	48,261						
HI_LOG	228,684						
LO_MAST	21,215						
MI_MAST	26						
TOTAL POLES	380,726						

Biomass Emissions Model

Emissions Results

BIOMASS UTILIZATION - USING P	OLES FRO	M ER TREAT	MENTS 1	THAT WOULD	BE OPEN BURNED	
Biomass Utilization -Emissions R	eduction (alculations				
Green tons	BMTW	207,500	tonne			
Moisture Content	M	40%	%			
Pre-project Biomass End-use						
Fraction Open Burned (slash)	Х _{ов}	90%	%			
Fraction left to decay	X _{DD}	10%	%			
Energy Production						
Higher Heating Value	HHV _{BM}	12.0000	MMbtu/o	dry tonne		
Energy production efficiency	f	50%	%			
Natural Gas Equivalent	EBM	747,000	MMbtu	assumes same er	nergy production efficiency	
Natural Gas Equivalent	E _{BM}	788,085	ଘ	assumes same er	nergy production efficiency	
Base Case (BAU) Total Emissions	GHG _{Base}	218,569	tCO2e			
GHG Emission from Combustion	GHG _{proj}	- 118,538	tCO2e			
TOTAL GHG EMISSION REDUCTIONS	GHG _{offsets}	337,108	tCO2e			

SCR Management Inc.

Transport Emissions

Transport Emissions CO2e	CO ₂	CH ₄	CH ₄ (CO ₂ e)	N ₂ O	N ₂ O (CO ₂ e)	Total CO₂e	Units
Cycle distance (ave 80 km/50 miles)	80.0	80.0	80.0	0.08	80.0	80.0	80.00
Fuel usage - Litres per km	0.8	0.8	0.8	8.0	0.8	0.8	0.80
Diesel – On Road Vehicles ^a	2,663.0	0.1	2.5	0.1	25.4	2,690.9	g/L
Total emissions (g) per load - 19							
tonnes/load	170,432.0	7.7	161.3	5.2	1,626.9	172,217.6	
Total emissions (g) Bdtonne	8,970.1	0.4	8.5	0.3	85.6	9,064.1	
Total Bone dry tonnes hauled	186,750.0	186,750.0	186,750.0	186,750.0	186,750.0	186,750.0	
Total emissions tonnes	1,675.17	0.08	1.59	0.05	15.99	1,692.72	

Harvesting Costs

		<u> </u>	ono (%	3							
		510	she (vo	9							
		0	5	10	15	20	25	30	35	40	45
_											
2	0.11	\$23.83	\$24.13	\$24.44	\$24.74	\$25.05	\$25.36	\$25.66	\$25.97	\$26.28	\$26.58
3,4	0.13	\$23.40	\$23.70	\$24.01	\$24.31	\$24.62	\$24.93	\$25.23	\$25.54	\$25.85	\$26.15
Ę	0.15	\$22.96	\$23.27	\$23.58	\$23.88	\$24.19	\$24.50	\$24.80	\$25.11	\$25.42	\$25.72
Ĕ	0.17	\$22.53	\$22.84	\$23.15	\$23.45	\$23.76	\$24.07	\$24.37	\$24.68	\$24.99	\$25.29
Ē	0.19	\$22.10	\$22.41	\$22.72	\$23.02	\$23.33	\$23.64	\$23.94	\$24.25	\$24.56	\$24.86
\$	0.21	\$21.67	\$21.98	\$22.29	\$22.59	\$22.90	\$23.21	\$23.51	\$23.82	\$24.13	\$24.43
<u>a</u>	0.23	\$21.24	\$21.55	\$21.86	\$22.16	\$22.47	\$22.78	\$23.08	\$23.39	\$23.70	\$24.00
<u>, </u>	0.25	\$20.81	\$21.12	\$21.43	\$21.73	\$22.04	\$22.35	\$22.65	\$22.96	\$23.26	\$23.57
- -	0.27	\$20.38	\$20.69	\$21.00	\$21.30	\$21.61	\$21.91	\$22.22	\$22.53	\$22.83	\$23.14
ğ	0.29	\$19.95	\$20.26	\$20.56	\$20.87	\$21.18	\$21.48	\$21.79	\$22.10	\$22.40	\$22.71
Ü	0.31	\$19.52	\$19.83	\$20.13	\$20.44	\$20.75	\$21.05	\$21.36	\$21.67	\$21.97	\$22.28
₹.	0.33	\$19.09	\$19.40	\$19.70	\$20.01	\$20.32	\$20.62	\$20.93	\$21.24	\$21.54	\$21.85
	0.35	\$18.74	\$19.05	\$19.36	\$19.66	\$19.97	\$20.28	\$20.58	\$20.89	\$21.19	\$21.50
	0.4	\$18.74	\$19.05	\$19.36	\$19.66	\$19.97	\$20.28	\$20.58	\$20.89	\$21.19	\$21.50

SCR Management Inc.

Delivered Wood Cost Estimates

Total Delivered Cost - Green Wood Green Tons \$/tonne												
			Slope									
		0	. 5	10	15	20	25	30	35	40	45	
	60	\$44.35	\$45.97	\$47.78	\$49.59	\$51.40	\$53.21	\$55.02	\$56.83	\$58.64	\$60.45	
	80	\$44.27	\$45.89	\$47.69	\$49.50	\$51.31	\$53.12	\$54.93	\$56.74	\$58.55	\$60.36	
	100	\$44.18	\$45.80	\$47.61	\$49.42	\$51.23	\$53.04	\$54.85	\$56.66	\$58.47	\$60.28	
	120	\$44.10	\$45.71	\$47.52	\$49.33	\$51.14	\$52.95	\$54.76	\$56.57	\$58.38	\$60.19	
Ø	140	\$44.01	\$45.63	\$47.44	\$49.25	\$51.06	\$52.87	\$54.68	\$56.49	\$58.30	\$60.10	
4	160	\$43.92	\$45.54	\$47.35	\$49.16	\$50.97	\$52.78	\$54.59	\$56.40	\$58.21	\$60.02	
ē	180	\$43.84	\$45.46	\$47.27	\$49.08	\$50.89	\$52.70	\$54.50	\$56.31	\$58.12	\$59.93	
3	200	\$43.75	\$45.37	\$47.18	\$48.99	\$50.80	\$52.61	\$54.42	\$56.23	\$58.04	\$59.85	
n	220	\$43.67	\$45.29	\$47.10	\$48.90	\$50.71	\$52.52	\$54.33	\$56.14	\$57. 9 5	\$59.76	
0	240	\$43.58	\$45.20	\$47.01	\$48.82	\$50.63	\$52.44	\$54.25	\$56.06	\$57.87	\$59.68	
>	260	\$43.50	\$45.11	\$46.92	\$48.73	\$50.54	\$52.35	\$54.16	\$55.97	\$57.78	\$59.59	
	280	\$43.41	\$45.03	\$46.84	\$48.65	\$50.46	\$52.27	\$54.08	\$55. 89	\$57.70	\$59.51	
	300	\$43.32	\$44.94	\$46.75	\$48.56	\$50.37	\$52.18	\$53.99	\$55. 80	\$57.61	\$59.42	
	320	\$43.24	\$44.86	\$46.67	\$48.48	\$50.29	\$52.10	\$53.91	\$55.71	\$57.52	\$59.33	
	340	\$43.15	\$44.77	\$46.58	\$48.39	\$50.20	\$52.01	\$53.82	\$55.63	\$57.44	\$59.25	

SCR Management Inc.

Delivered Wood Cost Estimates with Biomass Top-up

Total]	Fotal Delivered Cost - Green Wood Green Tons \$/tonne												
			Slope										
		0	5	10	15	20	25	30	35	40	45		
	60	\$37.35	\$38.97	\$40.78	\$42.59	\$44.40	\$46.21	\$48.02	\$49.83	\$51.64	\$53.45		
	80	\$37.27	\$38.89	\$40.69	\$42.50	\$44.31	\$46.12	\$47.93	\$49.74	\$51.55	\$53.36		
	100	\$37.18	\$38.80	\$40.61	\$42.42	\$44.23	\$46.04	\$47.85	\$49.66	\$51.47	\$53.28		
	120	\$37.10	\$38.71	\$40.52	\$42.33	\$44.14	\$45.95	\$47.76	\$49.57	\$51.38	\$53.19		
σ	140	\$37.01	\$38.63	\$40.44	\$42.25	\$44.06	\$45.87	\$47.68	\$49.49	\$51.30	\$53.10		
P	160	\$36.92	\$38.54	\$40.35	\$42.16	\$43.97	\$45.78	\$47.59	\$49.40	\$51.21	\$53.02		
e'	180	\$36.84	\$38.46	\$40.27	\$42.08	\$43.89	\$45.70	\$47.50	\$49.31	\$51.12	\$52.93		
Ε	200	\$36.75	\$38.37	\$40.18	\$41.99	\$43.80	\$45.61	\$47.42	\$49.23	\$51.04	\$52.85		
n	220	\$36.67	\$38.29	\$40.10	\$41.90	\$43.71	\$45.52	\$47.33	\$49.14	\$50.95	\$52.76		
0	240	\$36.58	\$38.20	\$40.01	\$41.82	\$43.63	\$45.44	\$47.25	\$49.06	\$50.87	\$52.68		
>	260	\$36.50	\$38.11	\$39.92	\$41.73	\$43.54	\$45.35	\$47.16	\$48.97	\$50.78	\$52.59		
	280	\$36.41	\$38.03	\$39.84	\$41.65	\$43.46	\$45.27	\$47.08	\$48.89	\$50.70	\$52.51		
	300	\$36.32	\$37.94	\$39.75	\$41.56	\$43.37	\$45.18	\$46.99	\$48.80	\$50.61	\$52.42		

@ 40% MC the ave Bdtonne = \$67

Conclusions

- Mastication benefits
 - Low volume treatments will contribute less
 - CO2e,
 - Particulate matter
 - Public issues related to smoke
 - Improves many market and non-market values
 - Competitive as an ER treatment method

Conclusions

ER Biomass Utilization Benefits

- Biomass Utilization + mastication could lower overall treatment costs
- Lowers CO2e and PM
- Provides an economical biomass supply for energy use

Future Research

Mastication

- Develop ERPro dbase to support knowledge and decision making
- Develop better stand volume estimates for developing an ER mastication/biomass harvesting analysis
- Continue to develop better carbon and emissions models that quantify the CO2^e impacts of mastication and biomass utilization
- Develop Carbon offset protocol for ER biomass utilization

Thank you

for more information or to review reports go to <u>www.scrmanagement.com</u>

Contact

Tom Hobby

thomashobby@scrmanagement.com

