Potential for Fast-Growth Poplar Plantations for Cellulosic Ethanol Production – A Life Cycle Approach

Catalin Ristea, PhD Candidate, UBC Forestry Thomas Maness, Professor & Head, FERM - OSU

Outline

- Policy and context
- What are the questions?
- Modeling energy production systems
- Biomass production
- Biofuels conversion
- Challenges
- Preliminary results

Conservation Economics & Policy

Background

- Climate change mitigation → GHG emissions reductions
 → Displace fossil transportation fuels → Liquid fuels from wood
- Transportation fuels are the "ends, needs", and the landbase and energy are the "scarce resources"
- BC policies & law: carbon tax; 33% reduction in GHG emissions by 2020; 5% biofuels by 2010¹
- BC demand: 850 mil. litres/yr biofuels in by 2025²
- BC resource: 17 mil. dry t/yr (4 mil. energy crops)^{3,4}
- Large scale production capacity:
 - 20 100 mil gal EtOH/yr⁵ (117 234 optimal⁶)

Background (cont'd.)

- Corn ethanol and soybean biodiesel transition to advanced biofuels
- Cellulosic biomass advantages:
 - avoids the food & feed vs. fuels debate
 - reclaimed from waste streams, residuals from current forestry operations
 - grown on idle or abandoned land
 - requires less fossil fuel, fertilizer, pesticides
 - can be used for heat & power at biorefinery, displacing even more fossil fuel power
 - Still, it needs land, which is scarce...

State of Knowledge

- Main focus is on grain ethanol; mainly material and energy balances
- Important aspects seldom considered:
 - biomass carbon sequestration
 - land use change emissions and carbon calculations (Calif. & EPA)
 - boundaries set for compliance/ regulatory purposes
 - water impacts
 - environmental dynamics
 - time and space

What are the questions?

- Conditions for economic feasibility of large-scale bioenergy production systems
- Suitability of poplar ethanol to substitute fossil fuels? (energy & carbon balance, costs)
- Landbase impacts of bioenergy:
 - GHG balances and mitigation costs
 - Scale of biomass production areas
 - Water use, energy use

Modeling energy production systems

- Our approach:
 - Project-level analysis: single biorefinery; associated plantations
 - Life cycle optimization model based on linear programming
 - with an embedded harvest scheduling model, Type II
 - Multi-objective: mill gate production costs, carbon benefits, energy use, CO₂-equivalent emissions
 - Entire life cycle: from initial landscape state to final end-use of biofuel

The Bioenergy Production System

Biomass production

- Short rotation forestry vs. short rotation coppice
 - soil carbon, soil nutrients, production costs, feedstock "quality" for various bioenergy products (CH&P vs. ethanol), GHG balances
 - Sustained yield (MAI) of improved hybrids culminating well after 7-8 years
 - Rotation age affects planting densities, management activities, harvesting methods
- Agricultural vs. forest lands the BC context
 - 12-year max for ag. lands, tax breaks, activities protected through Farm Practices Prot. Act (clearing, irrigating, fertilizers, pesticides
 - Forest and Range Practices Act, SFM Criteria & Indicators
- Land suitability, environmental variables
- Growth & yield curves, by genotypes, sites, production method
- Carbon in above- and below-ground biomass pools

Costs, emissions and energy use for all production activities

Preliminary results

Capacity		low		med		high	
Ethanol production	[mil. gal/yr]	20		100		250	
Conversion yield	[gal/BDT]	87	78	87	78	87	78
Feedstock diet	[BDT/day]	630	705	3,152	3,526	7,273	8,816
Biomass yield	[BDT/acre/yr]	9	4	9	4	9	4
Plantation area neede (100% dedicated)	ed [acres]	25,700	64,250	128,000	321,000	318,700	803,000

NAS (2009): capacity = 20-100 mil. gal/yr; yield = 67–78–87 gal/BDT Huang (2009): optimal 117-234 mil. gal/yr; 88.2 gal/BDT

Estimated BC ethanol sales by 2025: upwards of 735 million litres/year (Globe 2007, StatsCan 2009)

Biofuels conversion

- Conversion technology
 - biochemical conversion, separate enzymatic hydrolysis and fermentation, dilute-acid pretreatment
- Biorefinery (none at commercial stage)
 - techno-economic analysis
 - ethanol yields
 - residual chemical yields
 - processing costs
 - energy consumption
 - carbon (equiv.) emissions
 - sensitivity analysis for ranges of inputs
 - End-use: transport, energy, emissions, costs

US DoC 2007: to reduce ethanol production cost to 28 ¢/l*
(from 70 ¢), need to improve:
o feedstock -- 30 \$/ton (from \$60)
o ethanol yield -- 340 l/dry ton(227)
o enzymes -- 1.3 ¢/l (from 10.6 ¢)
*DOE target

Challenges

- Economies of scale for plantation land additional feedstocks needed
- Potential for carbon offsets accounting for carbon in all "pools" (live biomass, DOM, soil)
- Tracking GHGs through the life cycle
- Carbon and bioenergy standards not mature, nor agreed upon
- Operations start-up: match feedstock growth w/ biorefinery construction
- Public attitudes on managed forest lands (SFM) and on large-scale plantations
- Possible integration with other streams (solid wood prod.) –
 however, residues for bioenergy are the least value in the chain

References

- BC Climate Action Plan. 2008. BC Energy Plan; Bioenergy Strategy. Victoria, BC.
- 2. GLOBE Foundation. 2007. The endless energy project: A blueprint for complete energy self-sufficiency in British Columbia.
- 3. BIOCAP Canada. 2006. An Inventory of the Bioenergy Potential of British Columbia. BIOCAP Canada.
- 4. BIOCAP Canada. 2008. An information guide on pursuing biomass energy opportunities and technologies in British Columbia. BC Ministry of Energy, Mines and Petroleum Resources; BC Ministry of Forests and Range.
- 5. Huang et al. 2009. Effect of biomass species and plant size on cellulosic ethanol. Biomass and Bioenergy 33
- 6. US NAS. 2009. Liquid Transportation Fuels from Coal and Biomass: Technological Status, Costs, and Environmental Impacts. US National Academy of Sciences report.
 Förum

Conservation Economics & Policy

Acknowledgements

Genome BC

Pacific Institute for Climate Solutions

Forum on Conservation Economics and Policy

