Linking Forests and Economic Wellbeing: A Four-Quadrant Approach

Sen Wang, C. Tyler DesRoches, Brad Stennes, Bill Wilson

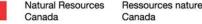
Pacific Forestry Centre, Canadian Forest Service, Victoria, BC

and

G. Cornelis van Kooten

Department of Economics, University of Victoria, Victoria, BC

- Explore the hypothesized relationship between forest cover and GDP per capita at the country level.
- Benchmark years: 1990, 2000, 2005
- Data mainly from United Nations (FAO and National Accounts Main Aggregates Database).



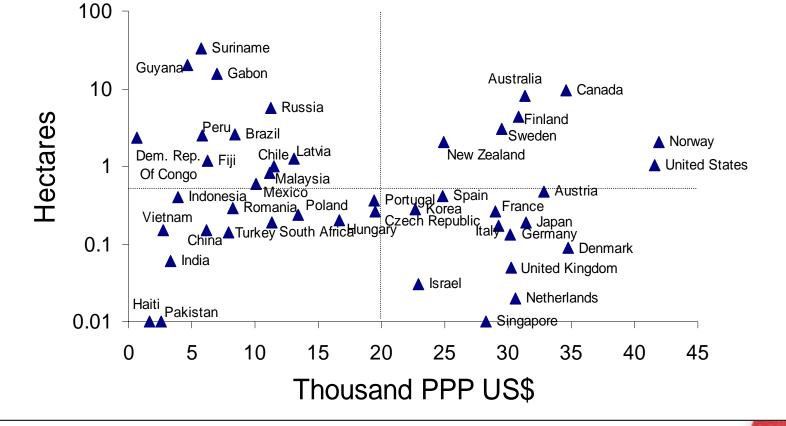
Environmental Kuznet's Curve?

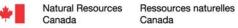
Maini's 4-Quadrant Approach

Ressources naturelles

The 4-Quadrant Framework

Forest	Q2	Q4
cover per	Higher forest cover,	Higher forest cover,
capita (ha)	lower GDP	higher GDP
	Q1 Lower forest cover, lower GDP	Q3 Lower forest cover, higher GDP


GDP per capita (US\$)



A visual example of selected countries

Per capita forest area and GDP, 2005

Normative arguments

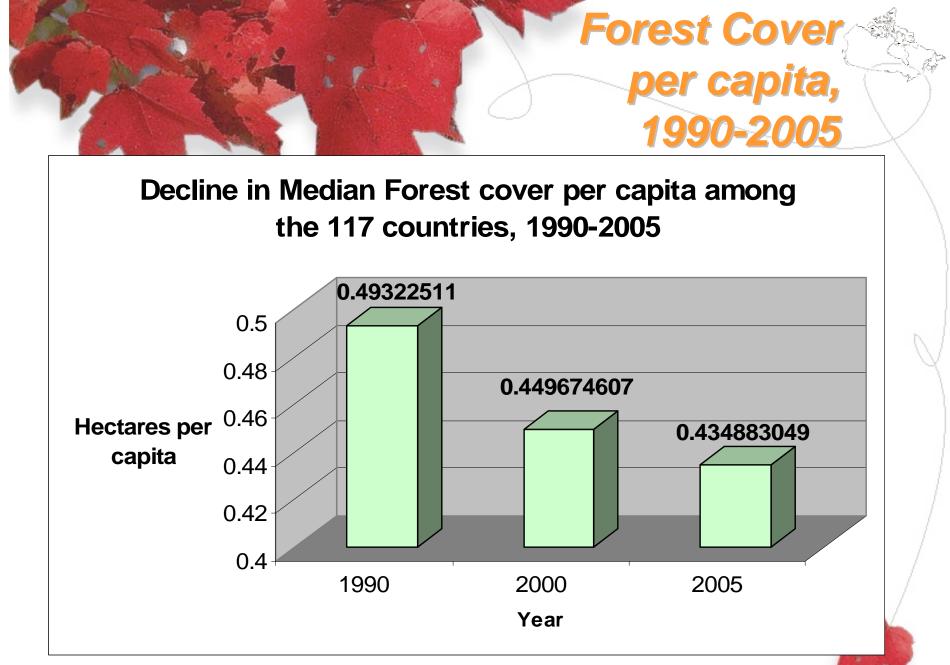
- Countries in Q1 the "worst-off"
- ℵ Countries in Q4 the "best-off"
- With all else equal, countries desire higher forest cover or higher per capita GDP, or both.
- Not possible to trade-off forest cover with income.
- Optimal direction is North-Easterly

First, a look at the raw data

Ressources naturelles Natural Resources Canada Canada

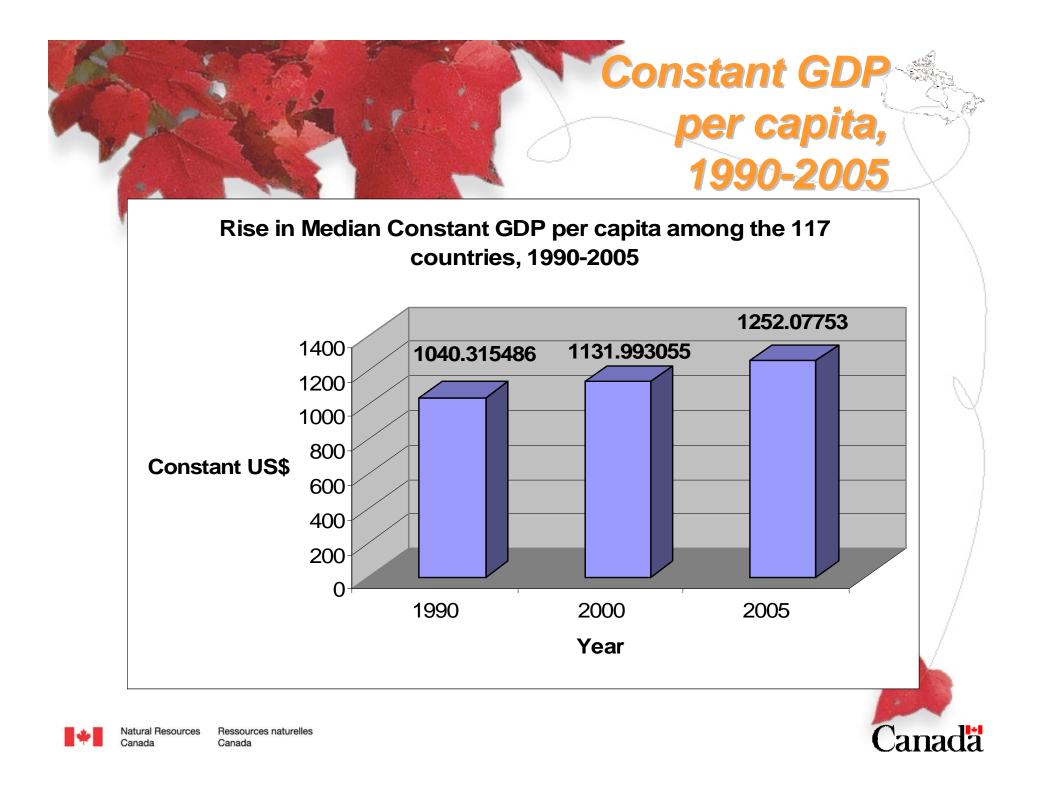
Change in Global Population, Forest Cover and GDP, 1990-2005

Year					Annual % change		
	1990	2000	2005	1990-2000	2000-2005	1990-2005	
World's population (10 ⁶) ^a	5,279	6,085	6,464	1.43	1.22	1.36	
World's total forests (10 ⁶ ha) ^b	4,077	3,988	3,952	-0.22	-0.18	-0.21	
Forests per capita (ha) ^c	0.77	0.66	0.61	-1.53	-1.56	-1.54	
World's GDP, (constant, \$US 10 ⁹) ^d	21,944	28,786	31,811	2.75	2.53	2.69	
World's constant per capita GDP (US\$) ^d	4157	4730	4979	1.30	1.29	1.30	

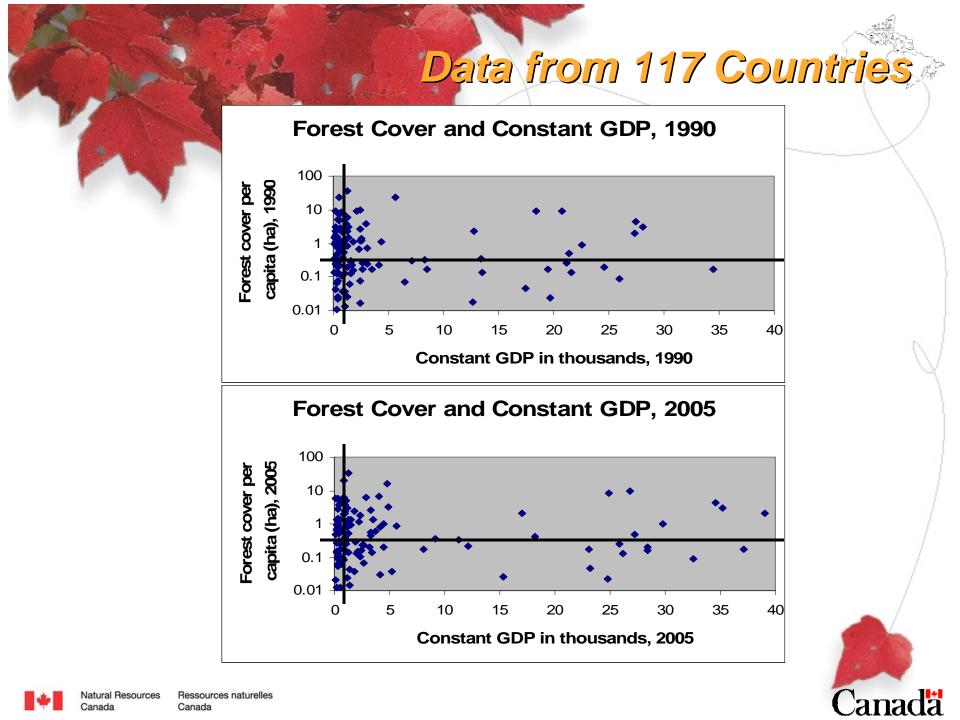

Canada

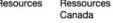
Per Capita Forest Cover and Change over Time

	Per capita forest cover (ha)			Annual % change			
Continent/ Year	1990	2000	2005	1990-2000	2000-2005	1990-2005	
Africa	1.129	0.817	0.699	-3.182	-3.072	-3.146	
Asia	0.175	0.149	0.147	-1.550	-0.361	-1.155	
Europe	1.429	1.429	1.357	-0.003	-1.026	-0.345	
North America	1.473	1.280	1.366	-1.391	1.309	-0.499	
Oceania	0.250	0.215	0.213	-1.467	-0.242	-1.060	
South America	3.116	2.550	2.216	-1.984	-2.763	-2.245	



Natural Resources Ressources naturelles Canada Canada



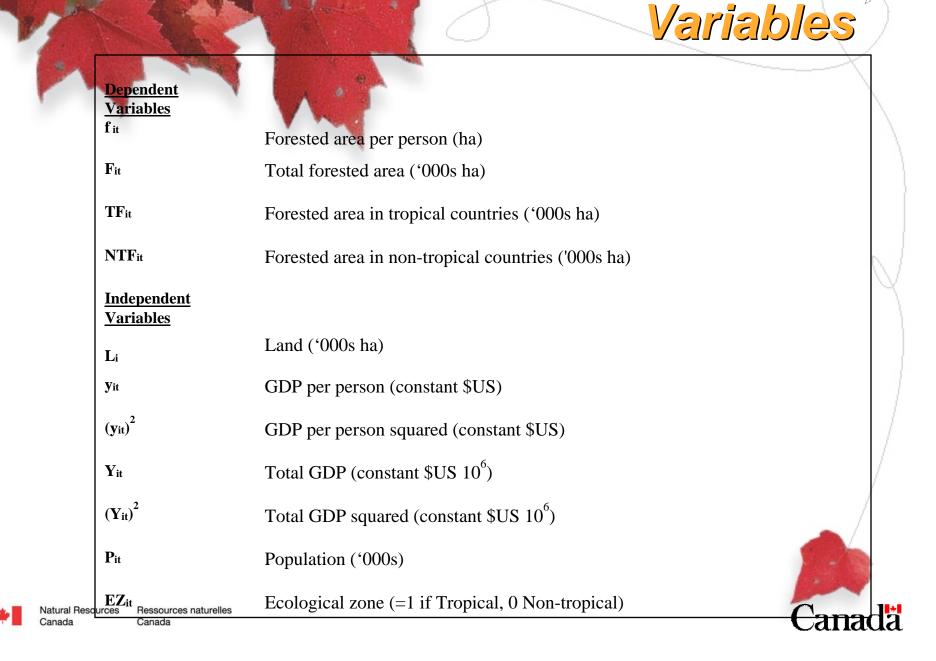


The 4-Quadrants

- Static demarcation lines or dynamic demarcation lines?
- Average or Median setting the demarcation lines?
- Some countries switched quadrants between 1990-2005
- All countries experienced movement within quadrants

Measure of association

- An empirical question
- Multiple regressions to determine the hypothesized association between forest cover and GDP
- k↓ Four models:


(A)
$$f_{it} = \beta_0 + \beta_1 L_i + \beta_2 y_{it} + \beta_3 (y_{it})^2 + \beta_4 E Z_{it} + e_{it}$$

(B)
$$F_{it} = \beta_0 + \beta_1 L_i + \beta_2 P_{it} + \beta_3 Y_{it} + \beta_4 (Y_{it})^2 + \beta_5 EZ_{it} + e_{it}$$

(c)
$$TF_{it} = \beta_0 + \beta_1 L_i + \beta_2 P_{it} + \beta_3 Y_{it} + \beta_4 (Y_{it})^2 + e_{it}$$

(D) $NTF_{it} = \beta_0 + \beta_1 L_i + \beta_2 P_{it} + \beta_3 Y_{it} + \beta_4 (Y_{it})^2 + e_{it}$

Regressions A and B

- Senchmark years and 117 countries, for a total of 351 observations.
- In regressions A and B, the Ecological Zone variable is a dummy variable (Tropical = 1; nontropical = 0).

Regressions C and D

- Regression C only includes countries (97) that contain 50% or greater of its forested area in a tropical/subtropical ecological zone.
- Regression D only includes countries (20) that contain 50% or greater of its forested area in a temperate or boreal ecological zone.

Regression results: A and B

- Results are limited
- Regression A: Poor fit very low R²
- Regression B: As expected, total forest cover shows positive relationship with L_i and negative relationship with P_i
- Positive and statistically significant relationship between F_i and Y_i

- All independent variables show statistical significance (except quadratic GDP in D)
- A positive relationship is shown between total GDP variable and total forest cover.
- Total GDP quadratic term in C shows a statistically significant negative relationship.

Goodman-Kruskal's gamma

- Verifies existence of correlation between two variables
- $\approx \gamma = (ad bc)/(ad + bc)$
- k It is possible to measure correlation between the benchmark years.

The four cells, a,b,c and d, correspond to the four quadrants. Q2,b Q4,d Q1,a Q3,c

Goodman-Kruskal's gamma

Year

Gamma value

1990	γ = -0.187
2000	γ = -0.084
2005	$\gamma = -0.187$

Discussion/Conclusion

- Preliminary findings suggest the 4-Q approach is a useful but limited framework in understanding the association between GDP and forest cover.
- 2. Clearly, the choice of demarcation lines have a big impact on quadrant occupancy.

Discussion/Conclusion

- 3. South-Easterly direction is the current trend.
- 4. Contradictory results in regressions.
- Future research will involve understanding country movements within and between quadrants by use of regression analysis.
- 6. Goodman-Kruskal's gamma indicates a degree of negative association.

