Economic Implications of New Water Typing Rules in Western Washington

Western Forest Economists May 2, 2006

Bruce Lippke, Kevin Ceder and Kevin Zobrist RTI/UW and Kernen Lien, Community Development Lewis County

Rural Technology Initiative

University of Washington College of Forest Resources

Comparison of New Water Typing Rules

Old Typing

- Type 1 3
 - Fish bearing
 - Site specific buffer of ~120 feet
- Type 4
 - Non fish bearing
 - First 300 feet 50 foot buffer
 - 50% of remaining stream 50 foot buffer
- Type 5 and 9
 - Seasonal and Unknown
 - No buffer

New Typing

- S and F (Type 1 3)
 - Fish bearing
 - Site specific buffer of ~120 feet
- Np (Type 4)
 - Non fish bearing perennial
 - First 300 feet 50 foot buffer
 - 50% of remaining stream 50 foot buffer
 - Beginning of Np water determined by Perennial Initiation Point (PIP)
- Ns and U (Type 5 and 9)
 - No Buffer

Effects of New Typing Rules

- Most Type 4, some 5 and 9 are now fish bearing (F and S)
- Some 5 and 9 are now Np
- PIPs now define beginning of Np
 - 52 acre inflow area defines PIP for Western Washington outside Sitka Spruce Zone

Estimated Core Economic Impact:

- Age class distribution is nearly uniform cut & thin on 50 yr rotation
- Harvest 30 mbf/acre @ \$396 net, thin 10 mbf
 @ \$313
- Estimate lost harvest revenue from no-harvest buffers (does not include additional losses from partial harvest buffers)
- Not including road or planning costs or impact of more fragmented access
- Compute for NIPF and Industry lands on F and Np streams
- Buffer acres derived from GIS and Hydrological models in ArcGIS on 10 meter DEM for PIPs

Lewis County example

Lewis County Forest Land Ownership

Impact of new stream typing rules in Lewis Co Industry 569,000 acres

	New	Old	change	%
buffers (acres)	49550	31840	17710	56
% of total acres	8.7	5.6	3.1	56
Rev/yr (\$mils)	14.9	9.6	5.3	56
NPV (\$Mils)	298	192	106	56
Initiative				

University of Washington College of Forest Resources

Impact of new stream typing rules in Lewis Co Lewis Co: NIPF 148,000 acres New Old change % buffers (acres) 15221 8606 6615 77 % of total acres 10.3 5.8 4.5 77 Rev/yr (\$mils) 4.6 2.6 2.0 77 NPV (\$Mils) 52 77 92 40 NIPF+Ind NPV 390 244 146 **60**

Averages don't tell the story

Small owner buffer areas run the full range of 0-100%

For 10 WWA case studies (old rules):

- Forest value loss: 22 to 54%
- Land value loss (SEV): 34 to 115%
- Many will not meet a target rate of return on the whole property not just the RMZ

Buffers – Old Water Typing Rules

Buffers – New Water Typing Rules

Impact of new stream typing rules scaled to WWA

NIPF+Ind NPV	3229	1960	1269
NPV (\$Mils)	1734	1115	619
Rev/yr (\$mils)	87	56	31
<i>Ind 3.3 mil. acres</i> Buffers (acres)	288363	185297	103066
NPV (\$Mils)	1494	845	650
Rev/yr (\$mils)	75	42	32
Buffers (acres)	247246	139794	6615
NIPF 2.4 mil. acres	New	Old	change

Impact by Stream Type

	Lewis Co	NIPF	%F		%Np	%Np
	stream type	F	new/old	Np	new/old	of Total
ы. 1	Buffers(acres)	12580	67%	2641	145%	17.4%
-12	% of total acres	8.52		1.79		
197	Rev/yr (\$mils)	3.8		0.8		
-49	NPV (\$Mils)	75.7		15.9		
ž						
H		Industry				
	Buffers(acres)	33867	35%	15683	133%	32%
	% of total acres	5.95		2.76		
1	Rev/yr (\$mils)	7.5		2.0		
1	NPV (\$Mils) Nitiative	150.9		40.5		

University of Washington College of Forest Resources

Cost per acre:

- NPV loss/buffer acre: \$6020
- NPV NIPF loss/total acre: \$620 (old 352 + F 207 + Np 64)
- NPV Ind loss/total acre: \$524 (old 338 + F 93 + Np 95)
- Typical bare land forest use value (SEV) assuming 5% cost of money:
 _ \$600-1000/acre

Implications:

- Sell off the buffers?
- Convert to other uses (especially NIPF)
- Thinning in the RMZ and narrower buffers can reduce the loss substantially and produce more old-forest attributes (DFC)
 -- there are alternatives.

Thinning Alternative

Forest	Forest Land Value	
	SEV acre	in DFC
No Touch Buffer	\$-215	32

Thin & Narrow Buffer\$20765-70

No Buffer	\$627	<<32
NO DUITEI	ΦΟΖΙ	<< 32

Landscape Comparison of Thinning Alternative

Distance to Stream (ft)

FFR

Distance to Stream (ft)

Thinning Alternative

DNR Hydro Layer vs. LiDAR DEM

142-ha of buffers21% of Study Area

- **324-ha of buffers**
- 41% of Study Area

Example Np Buffer Change Using Lidar

	Length	Area
	(Km)	(hectare)
DNR Hydro	68	240
LIDAR	362	860
LIDAR/DNR-H	ł 5.30x	3.60x

Conclusions:

- The new buffer rules will have the unintended consequence of motivating a change in land use away from forests and forest buffers
- Even ignoring land conversion other alternatives appear to be more attractive
- Until we walk the multi-disciplinary talk our objectives are likely far out of reach

Conclusions (cont):

- The legislated regulation has not produced stability in rule making
- New science (LiDAR) with current rule making procedures will likely contribute to additional increases in buffers, owner losses and conversions