Western Forest Economist Annual Meeting, 3 May 2016, Seattle, WA

Economic Valuation of Carbon Sequestration in Semi-Arid Mediterranean Climates An Ecosystem Services Application to Chaparral Landscapes in National Forests

Lorie Srivastava, Ph.D., Michael Hand, Ph.D., Cloé Garnache, Frank Lupi

Pacific Northwest Research Station/Western Wildlands Environmental Threats Assessment Centre

Partners and Collaborators

Research Team

- John Kim (USFS)
- Partners and collaborators
 - Jim Quinn (UC Davis)
 - Emma Underwood (UC Davis)
 - USFS (Nancy Grulke, Jose Sanchez, Nancy Molinari, Hugh Safford, Sarah Sawyer, Mark Metcalfe)

• Funding:

Pacific Northwest Research Station/Western
Wildlands Environmental Threats Assessment Centre

Outline

- Introduction
- Motivation
- Research Questions
- Study Area
- Ecosystem services studied
- Carbon Sequestration Methodology
- Conclusion and Policy implications

Introduction

- Socio-economic vulnerability assessment of Region 5
- This project will:
 - assess effects on people and communities
 - estimate economic value of a selection of ecosystem services
 - examine how these ecosystem services are affected by climate change
 - focus on four National Forests in southern California

An Ecosystem Services Approach

Climate-related forest changes

Change in quantity/quality of forest ecosystem services

Increase or decrease in well-being (utility)

Biophysical and ecological modeling: What changes will occur, what they will look like, how much, and where Economics: How ecological changes matter to people, by how much relative to other values, and tradeoffs

Motivation

- Need to evaluate trade-offs when making resource management and planning decisions
 - Can provide insight for forest planning and management
- Fill gaps in knowledge about:
 - Economic values of ecosystem services from national forests
 - How values for ecosystem services will change with a changing climate
- Aligns with ongoing efforts by USFS to manage resources in face of climate change

Research Questions

- What ecosystem services should be studied?
- What are their current values?
- How will climate change affect the underlying natural resources? How will these in turn affect generated ecosystem services?
- How do outcomes change due to fires?
- What is the economic value of these changes?
- How will these changes affect individuals and their communities?

Study Area

- Los Padres, Angeles, San Bernardino, Cleveland
- Highly urban, recent droughts, challenging air quality conditions
- Over 3.7 million acres, almost 30 million people
- Chaparral vegetation, semi-arid Mediterranean climate

Ecosystem Services

- Several ecosystem services highlighted as priority to the USFS:
 - Carbon sequestration
 - Water quantity
 - Air quality
 - Water quality
 - Recreation (MSU)
 - Aesthetic (MSU)
- Others:
 - Tribal cultural
 - Biodiversity

Ecosystem Services

- Several ecosystem services highlighted as priority to the USFS:
 - Carbon sequestration
 - Water quantity
 - Air quality
 - Water quality
 - Recreation (MSU)
 - Aesthetic (MSU)
- Others:
 - Tribal cultural
 - Biodiversity

Ecosystem services assessed in this phase of research from UC Davis

Ecosystem Services

- Several ecosystem services highlighted as priority to the USFS:
 - Carbon sequestration
 - Water quantity
 - Air quality
 - Water quality
 - Recreation (MSU)
 - Aesthetic (MSU)
- Others:
 - Tribal cultural
 - Biodiversity

Ecosystem service will discuss today

Methodology

• Two parts to the valuation:

Climate Change Mid- and end-ofcentury scenarios

Measured by Economic Valuation

Statistical models based on economic theory Ecosystem Services from National Forests

Ecosystem Services <----Quantity/Quality Change

Measured by Biophysical Models

Used as inputs for the economic models

- For social cost of carbon, will use value estimated by U.S. government
- Undertaking economic valuation, so market prices insufficient due to externality
- Social cost of carbon:
 - Estimate of monetized damages associated with incremental increase in carbon emissions
 - Includes changes in agricultural productivity, human health, property damages due to increased flood risk, etc.
 - Interagency Working Group on Social Cost of Carbon, U.S. Government (2010)

• Why this value?

- Incorporates outputs from three major integrated assessment models
 - FUND, DICE and PAGE
 - Combine climate processes, economic growth and feedback between climate and global economy
 - Link physical effects to economic damages
 - Equally weighted
- Updated regularly (2013 values used)

- Based on average social cost of carbon values estimated from the three integrated assessment models
- Three discount rates used: 2.5%, **3%**, and 5%
- Report values at above discount rates along with a fourth value to represent higher-than-expected economic effects
 - 95th percentile at 3% discount rate
- Estimated values for mid-century are given in 2007 dollars per metric ton of CO₂
 - Current (2015) average values range from \$12 \$109
 - Mid-century (2050) values range from \$27 \$221

- For biophysical modelling, three opportunities:
 - Updated MC2 model (to study area)
 - Dynamic vegetation model
 - Annual stocks of carbon
 - EVI proxy for biomass (1999-2015)
 - Change in biomass before and post-fire
 - Project-specific model for study area
 - All above completed by USFS

- Combine carbon sequestration model results with social cost of carbon
- Above ground and below ground estimates derived for present values
- Present $CO_2 = (Above Ground CO_2 \times SCC) + (Below Ground CO_2 \times SCC)$
- Combine forecasted carbon sequestration quantities with relevant social cost of carbon value
- Mid Century $CO_2 = (Mid Century Above Ground CO_2 \times SCC_{2050}) + (Mid Century Below Ground CO_2 \times SCC_{2050})$

Conclusions and Policy Implications

How the findings can be used

- Prioritize planning activities: Which projects yield greatest relative benefits for people?
- Management to adapt to climate change: What are relative benefits of adaptations to ecological change?
- Communicating how forests affect people and communities: How will ecological changes affect wellbeing?
- Use in benefit-cost analysis to determine: Will action generate positive net economic benefits?

Thank you!

- Questions/comments?
- Lorie Srivastava
 - Isrivastava@ucdavis.edu
- Michael Hand
 - mshand@fs.fed.us

