Prioritizing habitat restoration for endangered salmon: Getting the most bang for your buck

Robby Fonner, Jon Honea, Jeff Jorgensen, Michelle McClure, Mark Plummer

Western Forest Economists 2016 Meeting May 3, 2016

Note: Preliminary results, please do not cite or circulate

Restoration of endangered salmon habitat

- Hundreds of millions of dollars spent annually on stream restoration and monitoring for ESA-listed salmon in PNW
- Restoration projects are often misaligned with the biological needs of ESA-listed salmon at the subwatershed scale (e.g. Barnas et al. 2015)
- GOAL: Present a straightforward method for evaluating restoration alternatives at the subwatershed scale.

1. Define Restoration alternatives

Define baseline conditions and alternative restoration actions

> Set a common budget for all actions (\$)

Determine the unit cost for each action (\$/habitat)

Calculate **Define Restoration** 2. 1. alternatives change in habitat **Define baseline** conditions and alternative restoration actions Set a common Δ habitat = budget for all actions (\$) budget unit cost (\$/∆habitat) **Determine the** unit cost for each action (\$/habitat)

- 1. Define Restoration alternatives
 - Define baseline conditions and alternative restoration actions

Set a common budget for all actions (\$)

Determine the unit cost for each action (\$/habitat) 2. Calculate
3. Transformed change
in habitat
additional change
additional change</l

budget / unit cost
(\$) / (\$/Δhabitat)

 Δ habitat =

3. Translate habitat change into additional spawners

Coupled

biological

models

1. Define Restoration alternatives

Define baseline conditions and alternative restoration actions

> Set a common budget for all actions (\$)

Determine the unit cost for each action (\$/habitat)

Case study: Upper Columbia River spring Chinook

Columbia River System: Boundary Dam Chief Joseph Wells Dam Grand Coulee Wanapum Lower Monumental Granit Priest Rapid Goose Dan Bonneville John Day Dam ce Harbor McNa Dam The Dalle Dam

Salmon recovery depends on the 4-Hs:

- 1. Hydropower
- 2. Hatcheries
- 3. Harvest
- 4. Habitat

Case study: Wenatchee Basin spring Chinook

6000 -

Wenatchee basin:

Declining spring-run Chinook wild spawners:

Source: http://www.ecy.wa.gov/programs/wq/tmdl/WenatcheeMulti/

Coupled biological models connect restoration to Wenatchee wild spawners

Effectiveness (spawners/\$150K) habitat <u>quantity</u> restoration

Effectiveness (spawners/\$150K) habitat <u>quality</u> restoration

Effectiveness by Elevation

Elevation (m)

Effectiveness by Budget

Budget

Effectiveness thresholds

Effectiveness thresholds

Ongoing work

- 1. Restoration effectiveness interactions (pairwise)
- 2. Uncertainty:
 - Environmental, biological, project, model
 - We are interested in capturing the relative uncertainty of population persistence across alternative restoration actions
- 3. System management and climate change assumption sensitivities
- 4. Scaling up the analysis

Thank you!

I'm happy to take any additional questions at this time

Culvert pre-restoration

Post-restoration