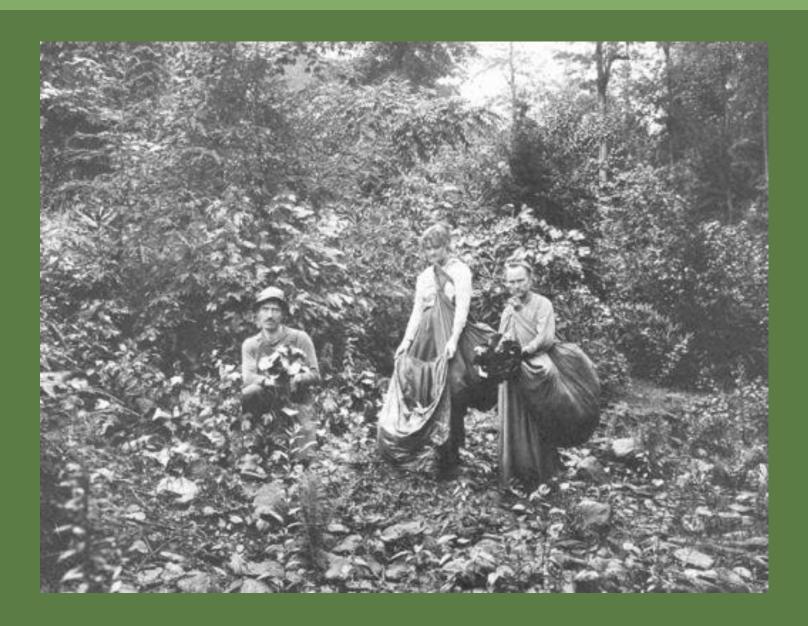


25 Years of Economic Research on Non-Timber Forest Products in the United States: History, Trends, Status, and Future Priorities

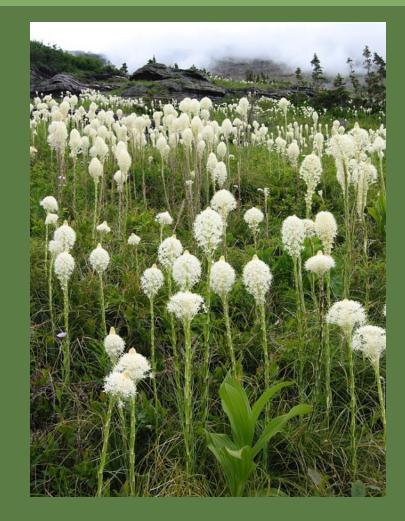
Gregory E. Frey USDA Forest Service 2015 ISFRE Conference Vancouver, BC

- Based on work for in progress chapter:
 "Economics of Non-Timber Forest
- Products." In: <u>A Comprehensive National Assessment of Non Timber Forest Products Impacts from Climatic Variability and Change.</u>
- Supported by USDA Forest Service



Co-Authors

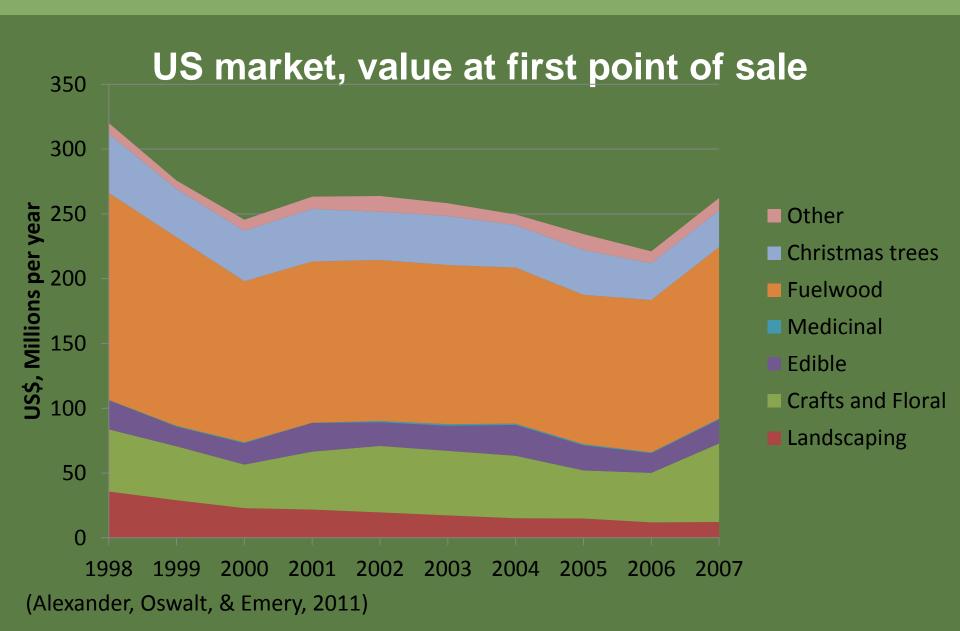
- Keith Blatner, Washington State University
- Meghan Downes, New Mexico State University
- Michael Jacobson, Penn State
- Erin Sills, NC State University
- Evan Mercer, USDA Forest Service
- Susan Alexander, USDA Forest Service
- James Chamberlain, USDA Forest Service
- Marla Emery, USDA Forest Service
- Michael Gold, University of Missouri
- Larry Godsey, Missouri Valley College
- Alisa Coffin, USDA Agriculture Research Service
- Rebecca Barlow, Auburn University

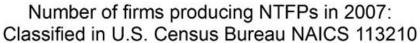


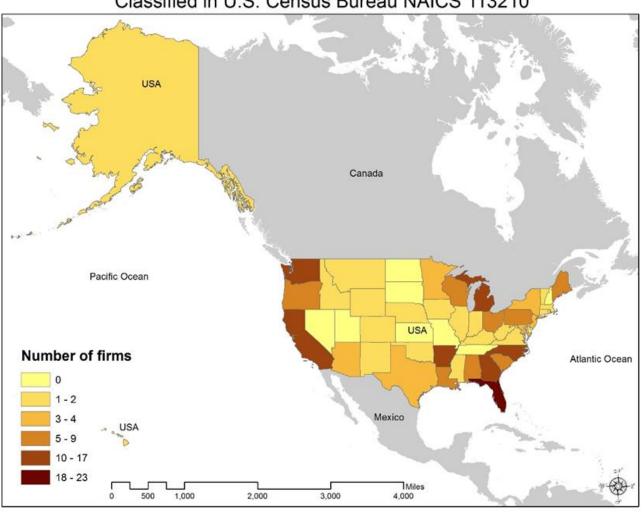
"[In the 1990s,]... NTFPs appeared to offer the prospect of reconciling two goals that seemed pitted against each other in the prevailing crisis – forest conservation and rural development." – (Robbins, Emery, & Rice, 2008)

Challenges

Informality


(McLain, Alexander, & Jones 2008; Alexander *et al.* 2002)


Secrecy



American Ginseng and Timber Harvest Relationships

619

TABLE 6 Average Annual Revenue From American Ginseng and Hardwood Timber Harvest by State for 2000–2007

State	Average annual ginseng harvest (kg)	Ginseng revenue* (thousand \$)	Timber revenue (thousand \$) 46,401		
Alabama	271	254			
Arkansas	587	551	30,137		
Georgia	160	150	9,401		
Illinois	1,128	1,057	30,404		
Indiana	2,391	2,241	75,251		
Iowa	333	312	9,942		
Kentucky	7,254	6,797	78,843		
Maryland	219	205	7,079		
Minnesota	580	543			
Missouri	836	783	81,739		
New York	290	272	82,157		
North Carolina	3,442	3,225	56,968		
Ohio	1,570	1,471	55,216		
Pennsylvania	629	589	228,374		
Tennessee	3,652	3,422	137,345		
Vermont	55	52	22,986		
Virginia	1,649	1,545	73,176		
West Virginia	2,604	2,440	150,099		
Wisconsin	1,052	986	90,749		
Totals	28,703	26,895	1,266,266		

Note. No data were available to estimate the timber revenue for Minneseta

^{*}Based on an average of \$937 kg-1 (dried).

Daniel Boone National Forest area harvesters: \$200-\$15,000 per year from NTFPs

(Hembram & Hoover 2008)

Forest farming shiitake NPV \$1,339 for 500 logs (Frey 2014)

Table 6 Net present value (NPV, US\$, 1/10 Ha) of North American medicinal forest crop candidates at three discount rates and three price levels (mean, minimum, maximum prices, 1990–2005)

	NPV (4% discount rate, US\$)			NPV (6% discount rate, US\$)			NPV (8% discount rate, US\$)		
	Mean price	Min price	Max price	Mean price	Min price	Max price	Mean price	Min price	Max price
ACRA	$-12,731^{T}$	$-12,888^{T}$	$-12,485^{T}$	-12,312 ^S	-12,441 ^S	$-12,092^{T}$	-11,654 ^S	-11,770 ^S	-11,472 ^S
CATH	$-15,609^{\mathrm{T}}$	$-15,662^{T}$	$-15,495^{T}$	$-14,851^{T}$	$-14,899^{\mathrm{T}}$	$-14,750^{\mathrm{T}}$	$-14,171^{T}$	$-14,214^{T}$	$-14,081^{T}$
CHLU	$-14,137^{S}$	$-15,454^{S}$	$-12,720^{S}$	$-13,272^{S}$	$-14,403^{S}$	$-12,056^{S}$	$-12,505^{S}$	$-13,479^{S}$	$-11,458^{S}$
DIVI	$-12,971^{T}$	$-13,044^{T}$	$-12,810^{T}$	$-12,543^{\mathrm{T}}$	$-12,610^{\mathrm{T}}$	$-12,394^{T}$	$-12,148^{T}$	$-12,210^{\mathrm{T}}$	$-12,010^{T}$
HYCA	$-10,518^{S}$	$-12,084^{S}$	$-8,423^{S}$	$-10,257^{S}$	$-12,084^{S}$	$-8,388^{S}$	$-10,011^{8}$	$-11,259^{S}$	$-8,340^{S}$
PAQU	15,261 ^T	$4,610^{8}$	$32,030^{\mathrm{T}}$	$12,414^{T}$	$2,879^{S}$	$27,372^{T}$	$9,937^{T}$	1,455 ^S	$23,307^{T}$
PHAM	$-7,782^{S}$	$-7,816^{S}$	$-7,707^{S}$	$-7,611^{S}$	$-7,643^{S}$	$-7,538^{S}$	$-7,448^{S}$	$-7,480^{S}$	$-7,379^{S}$
SACA	$-13,441^{8}$	$-14,234^{8}$	$-12,632^{8}$	$-12,783^{S}$	$-13,490^{S}$	$-12,061^{8}$	$-12,190^{S}$	$-12,822^{8}$	$-11,545^{S}$

NPV given is for the most profitable propagation method (Method of propagation: S, seed; T, transplant)

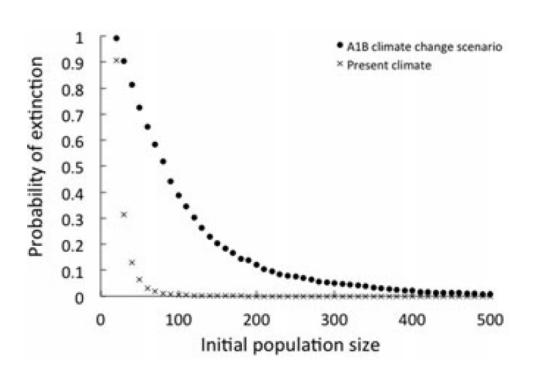
ACRA, Actaea racemosa; CATH, Caulophyllum thalictroides; CHLU, Chamaelirium luteum; DIVI, Dioscorea villosa; HYCA, Hydrastis canadensis; PAQU, Panax quinquefolius; PHAM, Phytolacca americana; SACA, Sanguinaria canadensis

• Huckleberry single-year consumer surplus of \$93,000 (2003) for a District in GFNP.

(Starbuck, Alexander, Berrens, & Bohara, 2004)

Safety Net / Natural Insurance

- Recent immigrants (Anderson, Blahna, Chavez, 2000; Emery, Ginger, & Chamberlain, 2006)
- Unemployed (Bailey, 1999)


Social Capital

- Gifts (Baumflek, Emery, & Ginger 2010)
- Networking (Hurley et al. 2015;
 McLain et al. 2014)

Figure 8. Probability of extinction as a function of the initial population size for two warming scenarios.

Gaps in Knowledge

Limitations for land management and resource-use policy

Gaps in Knowledge

Limitations for rural economic development

Gaps in Knowledge

 Limitations for mitigating vulnerabilities and enhancing well-being

Strategy?

- 1. Data coding for NTFPs.
- 2. Tracking system(s) of NTFP trade(s).
- 3. Include questions about collection and consumption of NTFPs.
- 4. Quantitative studies of the general population.
- 5. Identify communities dependent on NTFPs & vulnerabilities.
- 6. Meta-analyses of existing studies.
- 7. Studies for specific species or forests.
- 8. Test and compare management regimes.
- 9. Better integrate NTFP information in forest management.