Implications of CO₂ fertilization for global forests and industries

Joseph Buongiorno

University of Wisconsin-Madison

Background

(-) Climate change

CO_2 emissions =>

(+) Fertilization

Objectives

CO₂ Fertilization **Forest Growth** Wood supply **Prices Consumption & Production** Trade **Forest stock**

GFPM

The Global Forest Products Model

Dynamic spatial economic model

- 180 countries
 - Forest area, stock
 - 14 commodities + CO_2e
 - Production
 - Consumption
 - Imports, exports
 - Prices
- Current version 2015

GFPM Product Flows

Static phase

Market surplus:

$$\max(\sum_{i,k}\int_{0}^{D_{ik}}P_{ik}(D_{ik})dD_{ik} - \sum_{i,k}\int_{0}^{Y_{ik}}m_{ik}(Y_{ik})dY_{ik} - \sum_{i,j,k}c_{ijk}T_{ijk})$$

Equilibrium:

$$\sum_{j} T_{jik} + Y_{ik} = D_{ik} + \sum_{n} a_{ikn} Y_{in} + \sum_{j} T_{ijk} \qquad \forall i, k$$

 $Dual => P_{ik}$

$= I_{-1} + G_{-1} - S_{-1}$

Dynamic phase

Supply shift

$$S = S_{-1}(1 + \beta_I g_I)$$

Forest inventory change

$$I = I_{-1} + G_{-1} - S_{-1}$$

CO₂ fertilization

Inventory growth

$$G_{-1} = (g_a + g_u(1 + g_u^*))I_{-1}$$

DATA

Base year = 2011(FAOSTAT, 2014)

Outlook to 2060 for World Forests and Forest Industries

A Technical Document Supporting the Forest Service 2010 RPA Assessment

Joseph Buongiorno, Shushuai Zhu, **Ronald Raunikar, and Jeffrey P. Prestemon**

Resources = FRA 2010(FAO, 2010)

USDA-ERS

(2012)

The North American Forest **Sector Outlook Study**

2006-2030

Inited Nation

GDP

Population

2009-2065

CO₂ fertilization

"The response of NPP to elevated CO₂ is highly conserved across a broad range of productivity, with a median response of 23±2%" (Norby et al. 2005. PNAS)

 $\Delta NPP=0.13\%/ppm CO_2$

CO₂ fertilization

Effects on wood markets

Price effects (\$/m³)

	2065, A1B			
	2011	Without	With	Difference
Fuelwood	63	61	49	-20%
Industrial roundwood	101	135	110	-19%

Δ Fuelwood

	Scenario A1B, 2065		
	Production	Consumption	
	(%)	(%)	
Africa	12.5	12.5	
N/C America	2.8	2.8	
S America	2.7	2.7	
Asia	5.4	5.4	
Oceania	2.9	2.9	
Europe	2.4	2.5	
EU-28	0.2	2.2	
World	7.7	7.7	

Δ Industrial roundwood

	Scenario A1B		
	Production	Consumption	
	(%)	(%)	
Africa	15.3	3 19.5	
N/C America	-7.6	-10.4	
S America	5	5 19.1	
Asia	18.4	-0.3	
Oceania	-2.3	5.5	
Europe	6.9) 10	
EU-28	4.3	9.6	
World	4.2	2 4.2	

Effects on sawnwood & panels markets

Price effects (\$/m³)

	2065, A1B			
	2011	without	with	
Sawnwood	259	324	295	-9%
Veneer & plywood	573	999	963	-4%
Particleboard	285	552	518	-6%
Fiberboard	433	915	883	-3%

∆ Sawnwood & panels

	Scenario A1E	3, 2065
	Production	Consumption
	(%)	(%)
Africa	21.1	2.3
N/C America	-24.6	1.1
S America	23.9	2.0
Asia	-2.7	1.1
Oceania	3.4	1.0
Europe	5.6	1.2
EU-28	4	1.2
World	1.2	1.2

Effects on Pulp & paper

Price effects (\$/t)

	2065, A1B			
	2011	Without	With	
Mechanical pulp	509	942	901	-4%
Chemical pulp	642	1036	978	-6%
Other fiber pulp	1309	3848	3812	-1%
Waste paper	187	563	524	-7%
Newsprint	632	774	731	-6%
Printing & writing paper	974	1128	1088	-4%
Other paper & paperboard	986	1586	1538	-3%

Δ Wood pulp

	Scenario A1B, 2065		
	Production	Consumption	
	(%)	(%)	
Africa	9.2	4.8	
N/C America	-4.9	0	
S America	-1.7	-3.4	
Asia	4.1	0.2	
Oceania	0.6	0.6	
Europe	19.2	8.8	
EU-28	28.8	10.8	
World	1.8	1.8	

Δ Value added

	Scenario A1B		Scenario	B2
	(10 ⁹ \$)	(%)	(10 ⁹ \$)	(%)
Africa	1.3	8.8	0.8	5.7
N/C America	-11.8	-4	-5.1	-2.6
S America	7.3	10.4	3.0	4.9
Asia	-6.1	-0.9	-3.1	-0.6
Oceania	0.2	1.9	0.2	2.3
Europe	16.8	5.3	6.5	2.3
EU-28	14.0	5.2	6.6	2.6
World	7.6	0.6	2.3	0.2

Effects on stock=> CO₂e

Δ Growing stock

	Scenario A1B		Scenario	B2
	$(10^9 m^3)$	(%)	$(10^9 m^3)$	(%)
Africa	26	34%	16	21%
N/C America	11	11%	3	3%
S America	318	19%	17	10%
Asia	20	27%	9	10%
Oceania	2	14%	1	5%
Europe	26	19%	15	11%
EU-28	5	14%	3	7%
World	117	20%	62	10%

Conclusion

Caveats

– CO₂ fertilization
– Related climate changes

- Market effects

 Scenario dependent
 Lower prices
 Regional differences
- (+) Effect on stock > (-) Harvest => (+) CO_2e

Acknowledgments: USDA Forest Service, Jeff Prestemon, Shushuai Zhu

Thank you!