Forest Carbon Offsets and Carbon Emissions Trading: Governance, Contracting and the Principal-Agent Problem

> G Cornelis van Kooten Department of Economics University of Victoria

Introduction

- Types of carbon markets
 - Emissions trading with cap on emissions
 - Emissions trading with cap on emissions but with carbon offsets (EU-ETS)
 - Carbon offset trading with no cap
 - Government sponsored (Pacific Carbon Trust)
 - Voluntary markets
- How do carbon offset markets function? Well ... There is only one rule: Follow the money!
- Governance is the main obstacle to cap-and-trade, and to the establishment of carbon offsets in forestry

Consider the UN FCCC process: Kyoto and Paris

- Kyoto Protocol permitted afforestation and reforestation to attain emission reduction targets as an intermediary step, which appears to have become semi-permanent. This carries over into Paris.
- As a result of the COP7 in 2001 at Marrakech, Morocco, forestry activities that remove CO₂ from the atmosphere to offset CO₂ emissions were promoted, but the deal gave credence also to preventing deforestation in developing countries – led to the term ARD.
- Current discussions have expanded 'preventing deforestation' to REDD and REDD+ Reduced Emissions from Deforestation and forest Degradation with + denoting the benefits of protecting biodiversity (thereby linking the FCCC with the only other agreement signed at the 1992 Earth Summit Rio de Janeiro, the Convention on Biodiversity).
- REDD+ ideas have carried over from developing to developed countries: Pacific Carbon Trust purchases and resells credits from not harvesting forests, as does the Voluntary Carbon Exchange.
- How do carbon offsets work? At least in a mandatory market such as EU-ETS?

Compliance Markets and Effect of Forest Carbon Offsets

• Economists prefer tax on carbon emissions and subsidy for carbon removal.

- Carbon offsets create all kinds of problems that we really cannot properly address
- This paper is about these problems, especially as they pertain to transaction costs, governance and the principal-agent (PA) problem.

International climate accords and forestry activities for mitigating climate change resulted in various problems (some well known):

- 1. Additionality
- 2. Leakage
 - Micro: farmer plants trees on one field, clears trees on another
 - Macro: farmers in one region plant trees, price of land in agriculture rises, and landowners elsewhere convert forestland to agriculture
- 3. Double dipping:
 - Landowner receives payment for biodiversity, plus carbon credits
 - Afforestation in China: one country claims CERs under CDM, China claims a reduction in its emissions
- 4. Plethora of instruments
- 5. Transaction costs and governance

What happens when forest carbon offsets are included in an emissions trading scheme? Problems

- Transaction costs
 - Measurement
 - Monitoring
 - Costs of contracting (e.g., legal costs)
 - Accounting procedures
- Asymmetry of knowledge: Principal-agent problem (discussed below)
- Governance
 - Quality of institutions
 - Rule of law
 - Corruption (e.g., oversupply of credits)
 - Problem of corruption is shown on next slide. The countries of North America and northern Europe assume too much
- Overarching problem: CO₂ emissions trade for too low a price → don't achieve desired reductions in CO₂

Control of Corruption, 2013

Control of Corruption Index, Selected Countries, World Bank, 2013 Scale: Very Good =+2.5 to Very Bad = -2.5] In addition to corruption, problems of governance include:

- High transaction costs
- Uncertainty
- Additionality
- High potential for leakage
- Incompatible times horizons between forestry projects (something I refer to as the duration problem)
 - This makes it impossible to compare carbon offset credits from one forestry project to another
 - Forest-derived carbon offsets cannot be compared to emission reductions (witness the machinations regarding long-term and short-term offsets)

Clean Development Mechanism

- Took a long time to certify the first forestry project
- Since November 2007, only 70 afforestation/reforestation projects certified
 - average life span 22 years
 - only 0.8% of registered projects
 - 117 projects created that use wood pellets or forest biomass, with life span of only 8 years.

Type of Forestry Project	Number
Afforestation	11
Mangroves	1
Agroforestry	4
Reforestation	54

CDM projects as of April 1, 2016

Туре	numb	er	Expected CERs	/yr ('000s)	CERs Issued	d ('000s)
Wind	2605	31%	238,093	20%	179,859	11%
Hydro	2228	26%	329,260	27%	219,217	13%
Biomass energy	750	9%	51,240	4.3%	49,977	3.0%
Methane avoidance	690	8%	29,174	2.4%	28,171	1.7%
Solar	430	5.1%	13,773	1.1%	3,093	0.19%
Landfill gas	403	5%	58,136	5%	76,092	5%
EE own generation	383	4%	50,431	4%	74,160	4.5%
Fossil fuel switch	133	1.6%	69,499	6%	56,882	3.4%
EE Industry	129	1.5%	4,638	0%	3,582	0.2%
Coal bed/mine methane	111	1.3%	72,975	6%	45,278	2.7%
EE Supply side (power plants)	105	1.2%	51,662	4%	6,080	0.4%
N2O	105	1.2%	57,010	5%	294,806	18%
EE Households	102	1.2%	3,742	0.3%	767	0.05%
Afforestation & Reforestation	70	0.8%	2,482	0.2%	11,328	0.7%
Fugitive	56	0.7%	48,540	4.1%	39,370	2.4%
EE Service	36	0.4%	645	0.05%	99	0.006%
Geothermal	35	0.4%	12,401	1.0%	10,163	0.6%
Transport	33	0.4%	4,440	0.4%	2,401	0.1%
Cement	27	0.3%	4,574	0.4%	6,290	0.4%
HFCs	22	0.3%	81,319	7%	539,942	33%
Energy distrib.	22	0.3%	7,260	0.6%	1,576	0.1%
PFCs and SF6	17	0.2%	5,393	0.5%	6,129	0.4%
Mixed renewables	14	0.16%	611	0.1%	23	0.001%
CO2 usage	4	0.05%	91	0.01%	10	0.001%
Tidal	1	0.01%	315	0.03%	1,074	0.1%
Agriculture	1	0.01%	8	0.001%		
Total	8512	100%	1,197,713	100%	1,656,367	100%
HFCs, PFCs, SF& & N2O reduction	144	1.7%	143,721	12%	840,877	51%
Renewables	6063	71%	645,695	54%	463,405	28%
CH4 reduction & Cement & Coal mine/bed	1292	15%	213,499	18%	195,211	11.8%
Supply-side EE	510	6%	109,353	9%	81,816	4.9%
Fuel switch	133	1.6%	69,499	5.8%	56,882	3.4%
Demand-side EE	267	3.1%	9,025	0.8%	4,447	0.3%
Afforestation & Reforestation	70	0.8%	2,482	0.2%	11,328	0.7%
Transport	33	0.4%	4,440	0.4%	2,401	0.14%

Payments for Environmental Goods & Services (PES)

- Asymmetry of information in provision of EGS: Principal-Agent Problem
- Problem with sellers of carbon offset credits:
 - Often an agent intermediary between provider and eventual buyer
 - Often an aggregator
 - Agent has no incentive to ensure compliance
 - Agent has no incentive to police the lower-level agent (PA relation)
 - Agent/government could be corrupt
- Problem with ultimate buyers of carbon offset credits
 - content to just satisfy goal of complying with emission reduction targets
 - marketing strategy to enhance company's image
 - purchasing credits out of guilt, mandate or concern for others, but may not care whether it actually impacts global warming

Principal-Agent Relationships and the Contracting of Carbon Offset Credits

-	Principal Agent		Description/Comment		
Descending order			Agent maximizes immediate net		
of control over the	Landowner	Land user /	returns to land use; principal		
effectiveness of		tenant / peasant	maximizes present value of net		
CO ₂ offsets		('on-the-ground')	returns in long run. Contract could		
I _			be informal or non-existent		
	Aggregator / Contractor		Landowner and land user may be		
		I and owner /	the same agent (as in developed		
		formor	countries). Some form of contract		
			required to present for		
			certification.		
			Certifier and aggregator could be		
	Certificat	tion Process:	linked if governance structure is		
	Certifier /	'Gatekeeper'	unable to 'ring a fence' around		
			different aspects of a firm		
	Seller or	Aggragator	Seller/contractor and aggregator		
_	Contractor	Aggregator	could be identical		
	Buyer		When purchasing offset credits,		
\mathbf{V}		Seller	buyer trusts credits are legitimate		
	Duyci	Scher	and truly reduce atmospheric CO ₂ ,		
			whether true or not		

Paris Agreement as an Illustration

- Independent Nationally Determined Contributions:
 - considered by some to be binding (e.g., EU considers them binding, but only EU law is binding, as is California law passed in 2006)
 - Reality: domestic targets are voluntary with no true mechanism that compels adherence to targets
 - Shaming is principal means of ensuring compliance
- Each jurisdiction responsible for its own guidelines/strategies for addressing global warming
- Even if all targets are met, the impact on global warming is small
- Surprisingly, many jurisdictions rely on forestry
 - Russia and China have explicit forestation policies
 - EU to rely on solid biomass (wood) for approx. 45-50% of renewable energy (all biomass to constitute 65% of renewable energy) and 27% of EU energy to come from renewables by 2030 (about 1/8 of EU energy to come from wood by 2030)

Conclusions

- Asymmetric information and PA problem greatest obstacle to use of forestry for mitigating climate change at a global level
 - Governance and transaction costs are major issues that have never been addressed
 - Some research on PES has addressed PA concerns, but no real solution in sight
- My view: If you wish to include forestry, need to employ a tax/subsidy scheme
 - Based on a realistic forest growth, yield, management model that tracks CO₂ release / emissions and uptake
 - Monitoring requires only observations on land use
 - Parties contract to agree to model and associated payment scheme
- Remaining issues:
 - No benefits to biomass burning (pay for CO₂ emissions from burning; no benefit to avoided CO₂ emissions of replaced fossil fuels, except in the fossil fuel sector)
 - No benefits from fossil fuel emissions saved from not making steel/cement when wood substitutes for non-wood materials in construction
 - Benefit to carbon entering wood product pools (e.g., mass timber buildings) determined from modeling
 - No benefits to forest conservation