Mill capacity and willingness to utilize additional logging residues for electricity in southern United States

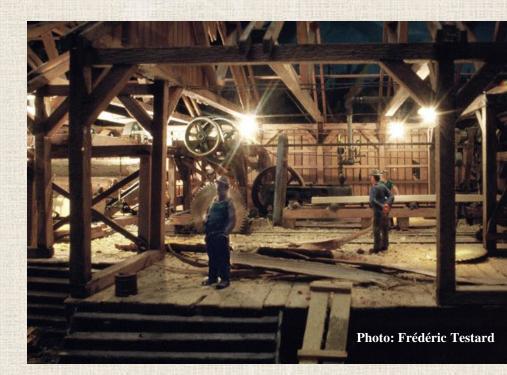
Photo : Northern Pulp

Raju Pokharel and Robert K Grala

Department of Forestry, Mississippi State University June 1st, 2015

Background

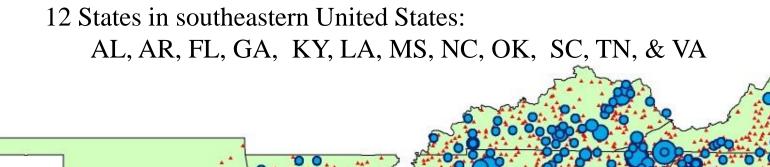
- Concerns related energy security and climate change.
- Kyoto Protocol and Copenhagen Summit set goals to lower CO₂emissions
 - ♦ 17% below 2005 levels by 2020, 42% by 2030 and 83% by 2050 in US.
- 8% of US energy is from renewable sources and 4% is from biomass
- United States set goal to increase renewable energy to 16% by 2025

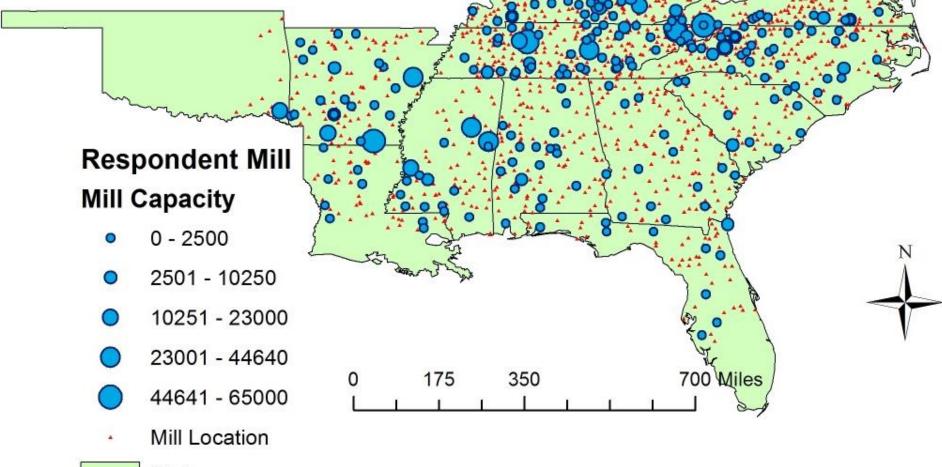

Forests cover

- ♦ U.S.: 33% (810 million acres)
- Southeastern United States: 50% (267 million acres)
- Mississippi: 65% (19.5 million acres)
- Different policy for sustainable usage of a forest biomass
 - USDA Woody Biomass Policy

Background

- A billion ton of dry biomass available
 - could potentially replace 30% of national petroleum use
- Woody biomass accounted for 70% of total biomass
- Woody residues expected to account for 18-26% of biomass used by 2031
- Mill residues, logging residues, and urban woody waste
- Only 1.5 % of mill residues not reused
- **Over the set of the s**
- Of total woody biomass used for bioenergy, almost 75% was recovered from forests
- Recoverable logging residues: 36.2 million dry ton for U.S. based on 1997 FIA data




Research Objectives

To quantify mill capacity and willingness to utilize additional logging residues for electricity production and identify factors limiting additional utilization.

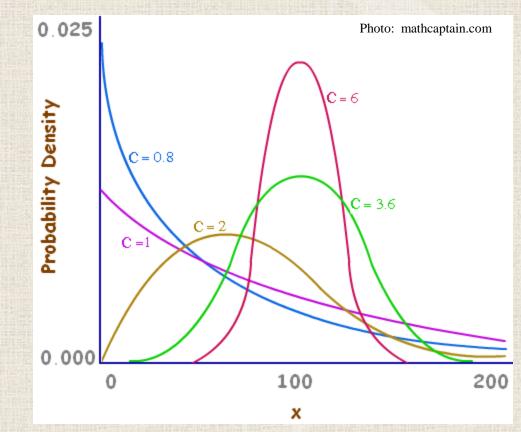
Study Area

States

Methods: Census survey

- Census survey of forest product manufacturers
- Tailored Design Dillman Method four mail contacts
- Test for non-response bias
 - Test between first and last fifty responses
 - Test of distribution of responding mills in 12 states compared to all mills
 - Test of distribution of mill types in responses compared to all mills

Mail box


Methods: Data distribution

Test of normality

 Kolmogorov-Smirnov one sample goodness-of-fit test

 $H_0: F_0(x) = F(x)$, where F(x) has a normal distribution

 $D = sup | S(x) - F_0(x) |$ where, $S(x) = (n_1 > = x)/N$

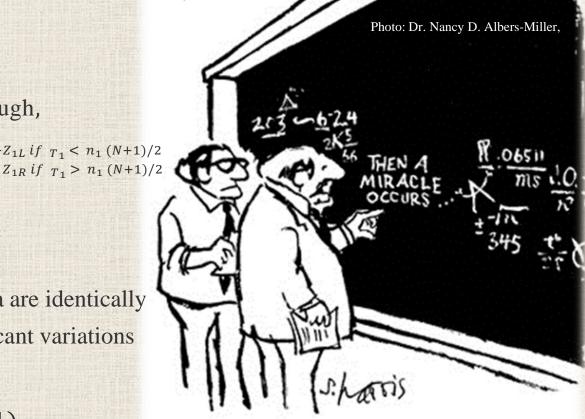
Methods: Hypothesis testing

Wilcoxon Mann Whitney Test

Measures if the two groups of data are identically distributed

$$T = S - \frac{n_1(n_1 - 1)}{2}$$

when the sample size is large enough,


$$Z = \frac{T \pm 0.5 - \frac{n_1(N+1)}{2}}{\frac{\sqrt{n_1 n_2(N+1)}}{12}} \text{ where, } Z\{-\frac{1}{2}$$

Kruskal Wallis Test

Measures if all groups of data are identically distributed or if there are significant variations among these groups

$$H = \frac{12}{N(N+1)} \sum_{i=1}^{k} \frac{Ri^2}{n_i} - 3(N+1)$$

R_i is rank sum per group

"I think you should be more explicit here in step two."

Results: Mill responses

- Total mills: 2,138.
- Adjusted response rate : 19.9%

Non Response bias Test

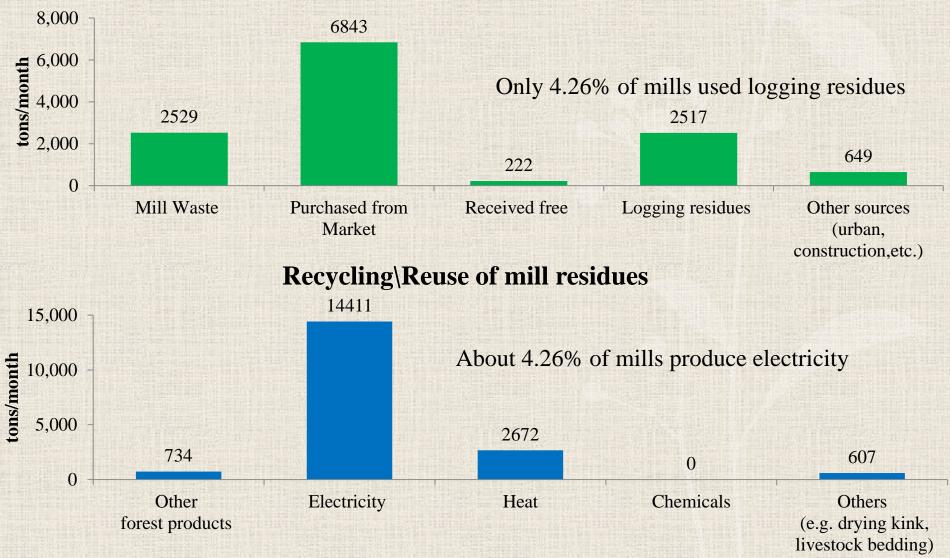
- No significant differences were observed between early and late responses on any variable between first and last 50 observations
- No significant differences were observed in distribution of mill types in responses compared to all mills (p-value = 0.468)
- No significant differences were observed in distribution of responding mills in 12 states compared to all mills (p-value= 0.863)

Results: Descriptive Statistics

Variable	Variable description	Ν	Mean	SD			
сар	Mill capacity to utilize wood residues to produce energy (green tons/month).	176	3691.96	10302.26			
use	Amount of woody residues utilized by mill (green tons/month).	208	3460.11	8137.52			
disp	Amount of woody residues disposed off by mill (green tons/month).	182	2680.43	6038.08			
upgrade	1 if mill upgraded equipment to produce electricity from wood residues 0 if not.	228	0.02	0.13			
future	1 if mill considered future upgrades to produce electricity from wood residues, 0 if not.	239	0.08	0.26			
will	1 if mill was willing to utilize additional logging residues to produce electricity, 0 if not.	227	0.11	0.31			
gprice	Maximum gate price mills were willing to pay for additional logging residues (\$ per green ton).	34	11.92	9.95			
haul	Maximum actual hauling distance over which logging residues were delivered (miles).	39	48.79	44.61			
ehaul	Maximum economic hauling distance over which logging residues can be delivered (miles).	68	57.78	41.64			
N: Number of (N: Number of Observation, SD: Standard Deviation						

Results: Data distribution

Normality

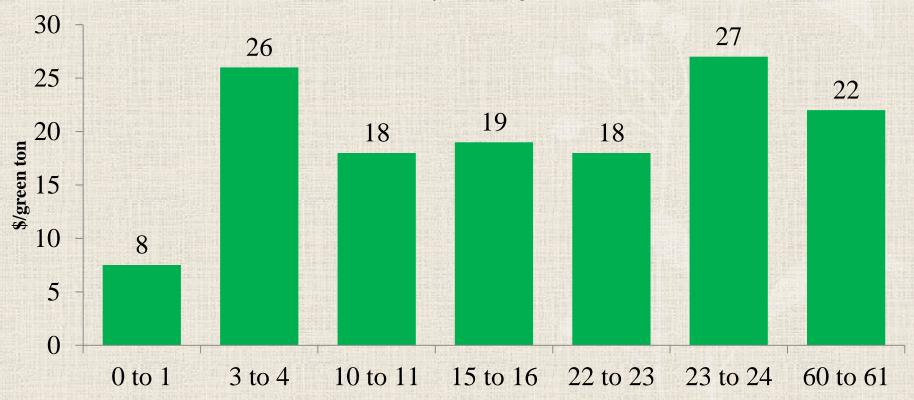

- Mill capacity to utilize woody residues (*cap*, p< 0.0001)
- Amount of residues used in mill (*use*, p < 0.0001)
- Amount of residues disposed off by mill (*disp*, p< 0.0001)</p>
- Price mill were willing to pay per ton at gate (*gprice*, p< 0.0001)</p>
- Distance considered economically feasible to haul logging residues (*ehaul*, p< 0.0001)
- Actual distance over which logging residues (*haul*, p=0.0645)

balanced left and right tails

mean \approx median

Results: Sources and reuse

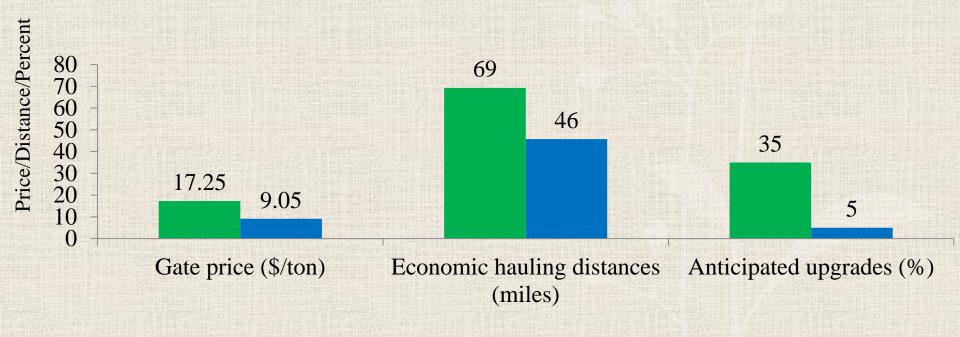
Sources of woody residues used in 2012



Results: Impact Analysis

Variable	Mill Type	Capacity	Willingness	Variable Description
				Willingness to utilize additional
will	p<.0001	p<.0001		logging residues to produce electricity
				Mill capacity to utilize woody
сар	p=0002			residues to produce bioenergy
use	p<.0001	p<.0001		Utilization of woody residues
disp	p=0.0039	p<.0001		Disposal of mill residues
upgrade	p=0.0029	p<.0001		Past upgrades
future		p=0.0063	p<.00001	Anticipated upgrades in the future
				Price willing to pay for additional
gprice		p=0.0063	p=0.0286	logging residues at the gate
				Distance over which logging residues
ehaul			p=0.0219	could be hauled economically
tcost	p=0.006			Transporting cost as a limitation
				Importance of storage space at the
lstoreb	p=0.011			mill

Results


Price willing to pay for additional logging residues to produce electricity at the gates

Mill capacity to utilize woody residues (1000 tons/month)

Results

Differences in price willing to pay at the gate, hauling distance, and anticipated upgrades in future between mill willing and not willing to utilize additional logging residues for electricity

• Willing to utilize additional logging

Not willing to utilize additional logging residues

Conclusions

- Woody biomass use: not to reduce CO₂ emission/ substitute energy demand, but for disposal as easy and useful method.
- Electricity production: very few but very high utilization.
- Not all mills can utilize logging residues for electricity
 - Saw mills have small operations, pulp mills have higher investments and energy demand.
- Target mills: pulp paper and composite products for competitive advantage
 - **Output** Use of biomass for energy would increase price
 - Using additional logging residues could help them
 - Equipment and supply chain more friendly to recover logging residues.

Conclusions

- Larger capacity had better chances of additional utilization, higher willingness to use, upgrade, and pay
- Capacity => 3000 tons/month mills were willing to pay price above \$18 per green ton (\$14.00 per green ton for fuel wood makes hauling biomass economic)
- Mill willingness increased gate price for logging residues
- Willingness and capacity shifts the demand curve outward.
- Incentives to increase willingness
- Policy can have significant impact on demand
- Economic sustainability is unknown (\$40 per dry ton of residues if hauled over 35 miles)

Acknowledgement

- Dr. Donald Grebner
- Dr. Stephen Grado
- Tr. Bill Cooke

CSREES CONEMICATION

UNIVERSITY

Forest & Wildlife Research Center