The effect of price on the financial performance of biofuel and biochar production using forest biomass feedstock

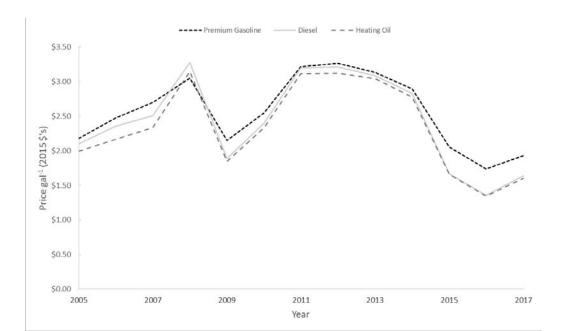
Robert Campbell^{1,2}, Nate Anderson², Helen Naughton¹, Daren Daugaard

¹University of Montana

²USFS Rocky Mountain Research Station

This research was supported by AFRI Grant 2013-68005-21298 from the USDA National Institute of Food and Agriculture

Forest Biomass in the Rockies

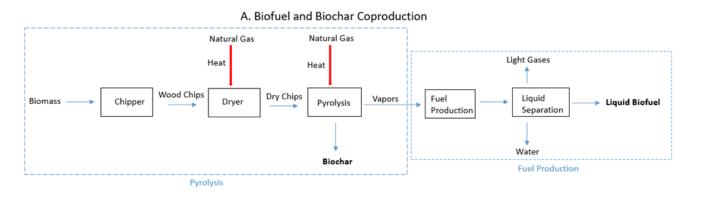

- Large areas of beetle-effected or unhealthy forests in need of management
- Substantial stocks of woody biomass associated with forest management not suitable for conventional wood products
- Potential supply of feedstock for cellulosic biofuel production

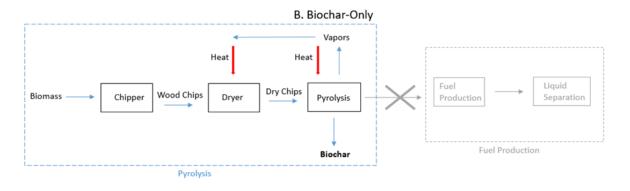
Inability to Meet U.S. Biofuel Targets

- Energy Independence and Security Act of 2007 set biofuel blending targets (36 billion gal annually by 2022)
- Targets for cellulosic biofuel have never been met
- Despite financial incentives from RINs (\$2.50 gal⁻¹)
- Low fuel prices are commonly cited as a contributing factor

Biochar Production to Improve Financial Outcomes

- Byproduct of thermochemical conversion
- Agricultural soil amendment
- Revenue generating coproduct
- Substantial uncertainty in market demand and prices exists
- Reported prices range from <\$100 t⁻¹ to >\$2,500 t⁻¹

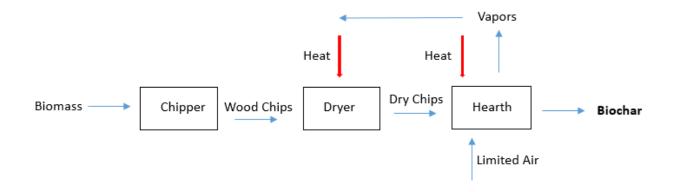


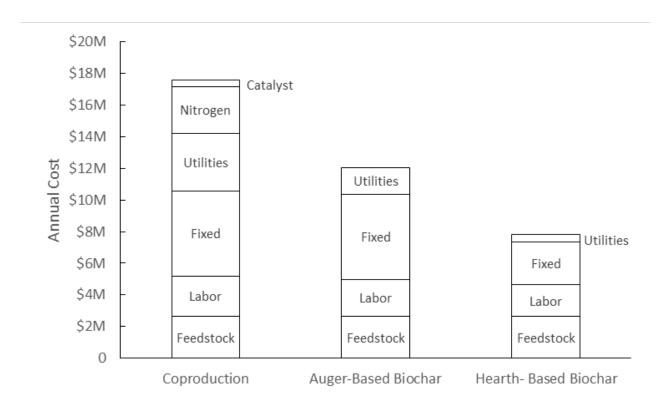

Objectives

- Conduct comparative technoeconomic analysis of two different pyrolysis production technologies
 - 1. Coproduction or biochar-only
 - 2. Only biochar (less capital intensive)
- Identify combination of market conditions and policy environment necessary for biofuel production to be financially viable
- Inform efficient investment and effective operating decisions to increase biofuel production

Thermochemical Conversion Pathway 1

Auger-Based Pyrolysis




Thermochemical Conversion Pathway 2

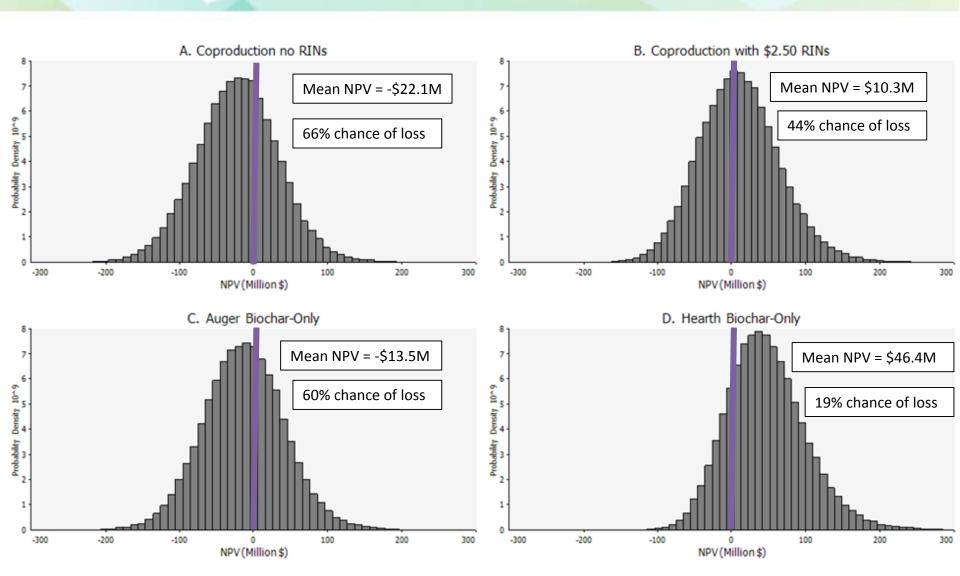
Hearth-Based Biochar

Operating Costs

Four Scenarios

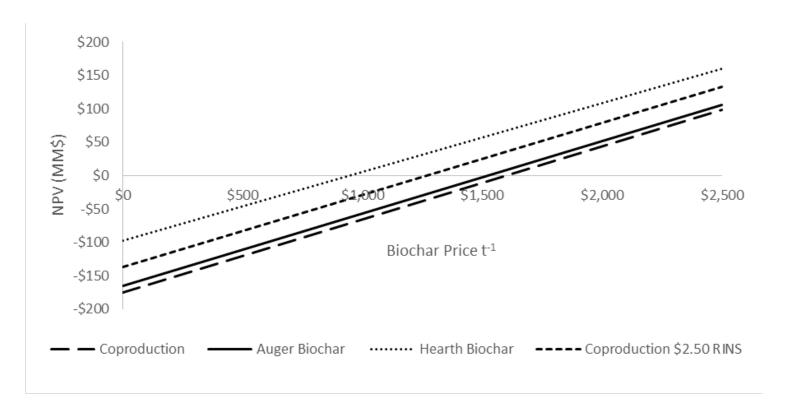
- 1. Coproduction of Biofuel and Biochar
- 2. Coproduction with \$2.50 RINs
- 3. Auger Biochar-Only
- 4. Hearth Biochar-Only

Technoeconomic Analysis with Monte Carlo Simulation

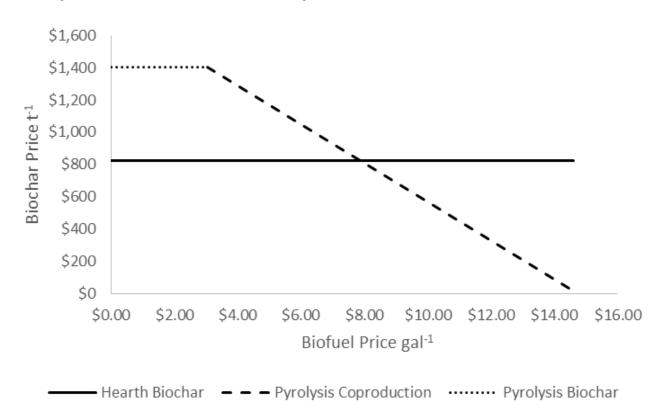

Outputs Inputs **Production data** Feedstock processing capacity Discounted cash flows **Net Present** • Product conversion rate Value (NPV) **Capital costs** • Equipment Buildings Construction & Engineering Land **Discounted cash flows** Working capital Minimum with target NPV=0 **Operating costs Selling Price** Feedstock Labor Maintenance Utilities Consumables **Monte Carlo Economic variables Simulation Distribution of** Product selling prices **NPV** outcomes RINs Discount rate

FinancingDepreciationTaxes

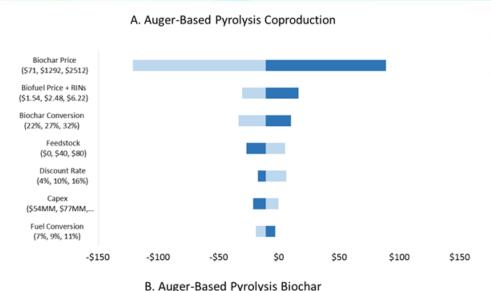
Monte Carlo Simulation: Random Inputs


Variable	Minimum	Base-Case	Maximum
Biochar price	\$ 71 t ⁻¹	\$1292 t ⁻¹	\$2,512 t ⁻¹
Biofuel price	\$1.54 gal ⁻¹	\$2.48 gal ⁻¹	\$3.22 gal ⁻¹
Biochar conversion rate	22%	27%	32%
Biofuel conversion rate	7%	9%	11%
Discount Rate	4%	10%	16%
Feedstock Price	\$0 t ⁻¹	\$40 t ⁻¹	\$80 t ⁻¹
Capital Investment	-30%	\$39M - \$77M	+30%

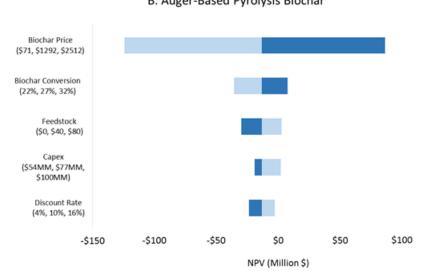
Results: NPV Distributions

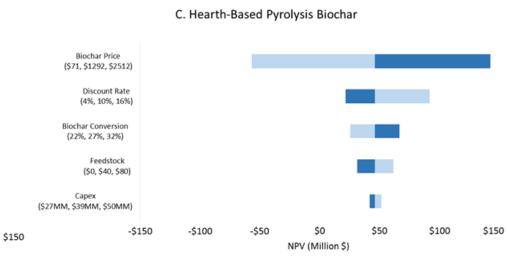

Results: NPV and Biochar Price

	Coproduction (No RINs)	Auger Biochar- Only	Coproduction (\$2.5 RINs)	Hearth Biochar
Minimum Biochar Price	\$1,483	\$1,403	\$1,181	\$826



Results: Combinations of Biofuel and Biochar Prices for NPV=0


- Biofuel price >\$3.05 gal⁻¹ for coproduction > biochar-only
- Minimum biofuel price = \$4.12 gal⁻¹ (RINs of \$1.64)
- Biofuel price >\$7.82 for coproduction > hearth biochar



Results: Sensitivity to Key Inputs

- NPV is most sensitive to product prices
- Capex and feedstock price are less influential

Key Findings

- Profitability is most sensitive to product market conditions
- Biofuel production has lagged behind targets largely due to market prices that are too low to support growth in the cellulosic biofuel industry
- Biochar coproduction has the potential to support biofuel production under certain market conditions
- Biochar offers promise as a stand-alone industry
- However, heavy reliance on biochar is likely to remain risky until more robust markets and more stable prices for the product emerges

Questions?

Mt Townsend, Olympic National Forest, 6/3/18

Appendix: Cost and Production Characteristics

	Auger-Based Coproduction	Auger-Based Biochar-only	Hearth-Based Biochar
Total Capital Investment	\$76.7 MM	\$76.7 MM	\$38.7 MM
Fixed Capital Investment	\$69.0 MM	\$69.0 MM	\$34.7 MM
Working Capital ^a	\$6.9 MM	\$6.9 MM	\$3.5 MM
Land ^b	\$836 M	\$836 M	\$504 M
Annual Fixed Operating Expenses	\$5.4 MM	\$5.4 MM	\$2.8 MM
Maintenance ^c	\$3.8 MM	\$3.8 MM	\$1.8MM
Insurance and Taxes ^d	\$1.5 MM	\$1.5 MM	\$774 M
Annual Labor Expense	\$2.6 MM	\$2.4 MM	\$2.0 MM
Annual Variable Expenses	\$6.4 MM	\$1.7 MM	\$474 M
Natural Gas	\$1.98 MM	\$0	\$356 M
Electricity	\$1.63 MM	\$1.63 MM	\$111 M
Diesel	\$39 M	\$39 M	\$5.9 M
Catalyst	\$459 M	\$0	\$0
Nitrogen	\$2.93 MM	\$0	\$0
Water	\$9.7 M	\$9.7 M	\$9.7 M
Production Characteristics			
Annual Feedstock	65.7 M t	65.7 M t	65.7 M t
Consumption			
Annual Biofuel Production	1.8 MM gal	0 gal	0 gal
Annual Biochar Production	17.7 M t	17.7 M t	17.7 M t
Biofuel Conversion Rate	9%	0%	0%
Biochar Conversion Rate	27%	27%	27%
Annual Operating Time	6,570 h	6,570 h	6,570 h

Appendix: Financial Accounting Assumptions

Parameter	Input Value	Source
Nominal discount rate	7.5%	Petter and Tyner (2014)
Inflation rate	2.5%	Petter and Tyner (2014)
Real discount rate	10%	Petter and Tyner (2014)
Loan financing	80% loan	De Jong et al. (2015)
Loan interest rate	8% APR	Zhao et al. (2016)
Loan term	10 years	Zhao et al. (2016)
Federal income tax rate	21%	United States Congress (2018)
Plant life	20 years	Wright et al. (2010)
Depreciation	Variable declining balance (MACRS)	Peters et al. (2003)
	7 year period	
Construction spending		Zhao et al. (2016)
Year 1	8% of FCI and land	
Year 2	60% of FCI	
Year 3	32% of FCI and working capital	