

Producing Biochar as an Alternative to Open Burning: LCA, Logistical and Economic Considerations

Elaine Oneil Director of Sustainability, CORRIM

June 5, 2018 Western Forest Economists, Olympia WA

Consortium for Research on Renewable Industrial Materials A non-profit corporation formed by 20 research institutions to conduct cradle to grave environmental studies of wood products

Data Integration from "Waste to Wisdom"

Funding

- Humboldt State University under a sub-award from the Office of Energy Efficiency and Renewable Energy (EERE), United States Department of Energy, Biomass Research and Development Initiative (BRDI) project number DE-EE0006297.

Contributors:

- Luke Rogers and Jeff Comnick, University of Washington,
 Seattle, WA (supply)
- Maureen Puettmann, Woodlife Consulting, Corvallis, OR (LCA of biochar production)
- Ted Bilek and Kamalakanta Sahoo, USDA FS Forest Products Laboratory, Madison WI (economics)

Waste to Wisdom project goals

- assess the viability of developing mobile biomass conversion technologies
- optimize biomass operations logistics
- Use field data to conduct techno-economic and life cycle assessment analyses
- Find the 'sweet spot' that could lead to improved rural economic opportunities, environmental benefits associated with reduced smoke from wildfires, and produce bio-based products with a lower greenhouse gas footprint than comparable fossil energy products.

Feedstock Supply

Used Spatial Analytics Model to estimate post-timber harvest biomass availability over the next 30 years

Data analysis by Rogers/Comnick - University of Washington

Input Layers

Forest Inventory

Site-Specific Detail...

Transportation Modeling

Harvest Model

Outputs

Modeled Average Annual Timber Harvest and Roadside Biomass Supply for WA, OR, CA

	Saw	Roadside	Roadside	Roadside	Roadside	Tons*
Harvested	timber	Tons**	Tons**	Tons **	Tons**	*
Acres	MMBF*	Pulp	Tops	Branches	Total	/Acre
301,524	6,445	3,837,415	459,069	5,708,874	10,005,358	33.2

** Bone Dry Metric tons

Scenario Locations

Scenario Location	Habitat type	% ground- based acres	Average BDT/ac
Port Angeles	Coastal wet	69%	39.1
Warm Springs	Inland Dry	72%	24.3
Oakridge	Coastal Dry	63%	29.1
Lakeview	Inland Dry	80%	20.9
Quincy	Inland Wet	71%	31.6

Haul Distance Impacts

	average dis BCT to poir	stance from nt of sale	volume (BDT a	distance impact on	
Maximum drive time from BCT to point of sale	4 hours	2 hours	4 hours	2 hours	recoverable volume
Pt Angeles	118.9	44.9	831,273	150,759	18%
Warm Springs	128.9	58.4	1,457,766	91,926	6%
Oakridge	121.9	48.7	2,121,756	313,326	15%
Lakeview	128.1	44.6	897,293	61,576	7%
Quincy	100.6	51.3	972,936	297,890	31%
All scenarios	121.4	49.9	6,281,024	915,476	15%

Potential Acres and Yield

Scenario	Drive Time (hrs) - center of watershed to town	Haul Distance (miles)	Percent Recovery	acres/ year	clean chip (pulp) BDT	chip or grind (tops only) BDT	ground material (branches only)	total residues at landing or roadside BDT	BDT/acre
AII (5)	4	121.4	100% roadside	211,120	2,346,566	303,130	3,631,329	6,281,024	29.8
All (5)	2	49.9	100% roadside	32,639	362,291	43,332	509,853	915,476	28.0
AII (5)	4	131.5	> 10 BDT/ac and 50% roadside	57,487	663,262	81,567	1,012,571	1,757,400	30.6
AII (5)	2	57.0	> 10 BDT/ac and 50% roadside	6,084	65,152	9,153	110,743	185,049	30.4

In-woods Scenarios

Life Cycle Assessment System Boundaries - Biochar Production

Biochar Production System

Mass balance, heat, and electricity requirements of an integrated biochar production system

Analysis Conditions courtesy of Bilek/Sahoo – USFS FPL

Carbon Footprint of Alternatives

Analysis from Puettmann – Woodlife Consulting

Capital costs included in biochar production system

	No of units	Equipment	Description	Purchase price(\$)	Economic life (year)	Salvage Value (%)	Reference
	2	Dryer	Beltomatic 123B (3.6 m x 0.69 m)	45,000	25	20	Manufacturer price
Biochar 2	2	Biochar machine	Biochar Solutions, Inc., 0.5 Tonnes/hr	340,000	10	20	Manufacturer price
	2	Genset	20 kW, PP20GT gasifier	35,000	18	10	Manufacturer price
			Biochar production facility	955,000			

Data courtesy of Bilek/Sahoo – USFS FPL

Annual operating costs incurred in biochar production systems

Sl no	Descriptions	Units	Biochar	Comments
1	Feedstocks ^a	\$/ODMT	14.0	Micro-chipping and transportation
2	Relocations ^b	\$/year	34,400	Assuming two relocations in a year
3	Repair and maintenance ^c	\$/year	10,750	20% of SLD
4	Consumables d	\$/year	10,683	Annual usage of diesel and propane
5	Packaging ^e	\$/ODMT	124.1	
6	Finished good transportation ^f	\$/ODMT	52.0	
7	Labor ^g	\$/Year	170,150	
8	Insurance and miscellaneous h	\$/2000 hrs	11,100	

Financial performance of portable BCT systems

		Before finance and tax	Before tax	After tax
	Total cost $(\$, \times 10^6)$	\$2.9		
	MSP (\$/ODMT)	1044.2	941.3	962.8
	Nominal IRR	16.5%	19.8%	14.4%
	Break-even delivered feedstock cost (\$/green tonne)	10.3	23.4	20.1
Biochar	Break-even product value [short-term operating](\$/ODMT)	710.1		
	Break-even product value [medium-term operating](\$/ODMT)	588.7		

Data courtesy of Bilek/Sahoo – USFS FPL

There is a Reason Why...

Biochar Production System

Biochar Production System

Air Burner

Carbon Footprint per metric ton of feedstock

equipment type			using diesel generator		using a power pallet			
	'		Biochar- 1/3 tops:2/3 pulpwoo		1/3		Biochar Oregon	Biochar Air
	•	wood	-	chips	d	-	Kiln	Burner
mt CO ₂ eq. emission	1.79	1.79	2.10	1.67	2.03	1.69	0.84	0.86
mt CO ₂ eq. stored in biochar	-	-	(0.37)	(0.38)	(0.37)	0.38)	(0.56)	(0.65)
mt CO ₂ eq sequestered during tree growth	(1.83)	(1.83)	(1.83)	(1.83)	(1.95)	(1.93)	(1.83)	(1.83)
Net mt CO ₂ eq	(0.04)	(0.04)	(0.10)	(0.54)	(0.29)	(0.63)	(1.55)	(1.63)

Conclusions - LCA of Biochar

- Large data uncertainty in the biochar systems (F(feedstock quality, MC, distance, and system used))
- Biochar quality parameter will affect LCA results
- Boutique markets are needed for financial viability
- Small scale systems could fit in certain situations
- Wider systems perspective needs to be integrated for the full picture

Thank You!

For further Information:

Elaine Oneil, PhD
Director of Science and Sustainability,
CORRIM

elaine@corrim.org

