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A B S T R A C T

Delivered log prices represent stochastic values exchanged in competitive marketplaces, responsive to unfolding
macroeconomic forces operating through shifts in supply and demand. Major market disruption events, ex-
perienced as price appreciation or devaluation, shape into predictable cycles to balance at market price equi-
librium.

Monthly delivered log price records of a single grade/sort in the United States of America, Washington state's
Puget Sound, from January 1989 through October 2019, are considered. The price series is analyzed during two
market disruption and recovery events, reveal characteristics of a Markov-chain of order following a random-
walk with ultimate return to base price levels. The Real Price Appreciation Forecast tool is guided by commodity
real price disruption event severity in terms of how significant the price change is and how long it takes for the
price disruption to initially peak or trough. The path of real price recovery to stable market equilibrium levels is
predicted through the Real Price Appreciation Forecast tool presented in this manuscript. Within this price
forecasting analysis, shocks, white noise, and other short-duration market events are viewed as peripheral
factors when observing the ultimate market real equilibrium price level. The Real Price Appreciation Forecast
tool gives the practitioner a mathematical model to analyze delivered log market data to predict the equilibrium
price range shaped by the Markov-chain of order random-walk.

1. Introduction

While biologic parameters of forest growth and timber maturation
are readily formulated (Arney, 2016; Prodan, 1968), timber commodity
price predictions appear to be more challenging. Delivered log prices,
responding to various competitive market-influencing forces, persis-
tently fluctuate, frustrating the accuracy of price prediction claims.

Near-term commodity price projections generally favor assumptions
that prices tomorrow will be about what they are today (Rinaldi and
Jonsson, 2013). Commodity price forecasting directly impacts forest-
land ownership decisions when profitability is evaluated. Even forest-
land owners who do not plan to harvest timber on their property in the
near-term but will eventually sell or purchase forestlands, must be able
to appraise their forestland assets with attention given to changing
timber commodity values on subject properties (USPAP, 2018; IVCS,
2017). Tradeoffs between competitive timber market values, other
commodity markets, and non-commodity valuation, determine fi-
nancial opportunities to define the highest and best use value of each

property asset (PropEx, 2003). These activities necessitate an obvious
need for accurate timber commodity price forecasts.

This has led to matching timber commodity price prediction
methods with well-developed growth and yield estimates. Forestland
value changes through time as trees mature and as price cycles ap-
preciate or devalue, affecting forestland appraisals (USPAP, 2018; IVCS,
2017), financially optimal timber harvest timing (Schlosser, 2014), and
asset return on investment considerations (Bare and Waggener, 1980).

The Real Price Appreciation (RPA) Forecast tool analysis was in-
itiated in 2009 in the aftermath of the Great Recession (NBER, 2017).
Monthly market data were synchronized with federal economic statis-
tics, to integrate Markov-chain random-walk principles into delivered
log market price predictions.

1.1. Theory of Markov processes

The Russian mathematician, Andrei A. Markov (1856–1922), for-
mulated what has become known as the “Markov process” (Whitt,
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2013). His research combined probability theory and statistics to de-
scribe stochastic variables satisfying certain properties: future prices are
determined only by current events, not based on past performance
(Sigman, 2009). On the other hand, there is flexibility when defining
event duration to eclipse a price point by encompassing several con-
secutive events. More recently, various forms of memory have been
added to the basic Markov model (Gintis, 2013), giving form to the
“Markov-chain of order”: a Markov-chain with memory of ‘m’ – time
periods (Sipos et al., 2016).

Price time-series are often modeled as a Markov process or random
walks, which, in some circumstances are the same thing. The forecast
horizon takes advantage of reasoned intertemporal influences on the
dependent variable: competitive market equilibrium price.
Macroeconomic researchers have used Markov-chain random-walk
theory with prediction smoothing and error adjustment techniques to
exogenously model equilibrium price predictions in competitive mar-
kets. The Markov-chain with memory theory can be used as a method
for performing a random-walk model, with cycle return to price in-
itiation levels, as applicable to commodity price forecasting (Franco
et al., 2012).

In the Markov-chain random-walk context, price series are mean-
reverting, at any given instant price changes are random, but over time
the series will migrate to the mean (Armstrong et al., 2002). The con-
cept of prices returning to the cycle's price-starting point articulates real
price values as exogenous variables while negotiating macroeconomic
modalities in their current expressive terms. The process described in
this paper involves a Markov-chain random-walk with discrete real
price mean reversion (Meucci, 2017).

In probability theory, a mathematical model using identifiably finite
non-negative values, with an exponential distribution, describes a po-
tentially viable Markov decision horizon (Fogarasi and Levendovszky,
2013). Future behaviors predicted by the model develop response on
the parameters of an economic disruption event initiating the cycle
(Norris, 1997). A Markov-chain discrete-time with memory of ‘m’ var-
iation proves applicable to competitively priced delivered timber log
commodities because this process defines a sequence, or chain of states,
partially based on historic patterns (Whitt, 2013). Competitively priced
delivered log prices possess these Markov properties.

1.2. Input commodity data

Log market price forecasting has been considered by many analysts.
In United States of America's Pacific Northwest, the US Forest Service
(USFS) has published monthly stumpage price reports since about 1975
(Haynes, 1998), in annual reports derived from publicly owned timber
stumpage sales data. While stumpage market data can identify trends
and cycles in timber commodity markets, they are specifically based
only on stumpage market transactions.

Delivered log market commodities represent a stage of timber pro-
duction with logs delivered to raw material buyers, generally lumber
mills. Logs are measured to specific lengths, “greater than” small-end
diameters, and of specific species for each sort, with volume of each log
defined by the governing log scaling bureau (NLRAG, 2011). Compe-
titive market value represents the price paid to sellers for timber based
on volume as graded and scaled logs. Stumpage sale buyers build roads,
harvest timber, merchandise it, and load it onto logging trucks where
they ultimately sell the timber to log-processing buyers, generally
lumber mills, as logs. At this transaction point, commodities are sold in
delivered log markets with each log sorted, graded, and scaled ac-
cording to the state's log scaling rules (PSLSGB, 1948).

The Washington Department of Natural Resources (WaDNR), pub-
lishes monthly “mill log prices” detailing transactions of seven to nine
species, each with multiple grades and in different market areas
(WaDNR, 2019). This manuscript addresses delivered log market price
forecasting in the Puget Sound region of western Washington, USA.
Logs are measured by state licensed scalers using Scribner board foot,

decimal C. scale as administered by the Puget Sound Log Scaling and
Grading Bureau (PSLSGB, 1948) and measured in thousand board feet
(MBF). Monthly prices in this analysis are collected as nominal prices
per MBF by sort and grade (WaDNR, 2019), then converted to real
prices by translating effects of inflation in the USA economy into cur-
rent terms (BLS, 2019).

Log characteristics are defined by sorts and grades to express wood
quality, small-end log diameter (inside bark), length of each log (plus
trim), all these being reduced to net measurements for any defect losses
(NLRAG, 2011). Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.)
Franco)) log sorts generally include in increasing value: pulp, 4-Saw-
mill, 3-Sawmill, 2-Sawmill, and Saw Mill and Better (SM & Better).

Douglas-fir logs dominate domestic and export markets from the
Puget Sound region and have since before 1960 (Daniels, 2005). Wa-
shington state's Puget Sound region is oftentimes called the Douglas-fir
Region (Darr et al., 1980), because of the market dominance for log
value and volume traded.

This manuscript expresses Douglas-fir sort, 2-Sawmill grade log
prices to model price prediction migration trends in Washington's Puget
Sound marketplace. The dominance of this sort/grade commodity in
commercial market transactions (Haynes et al., 1988; Adams, 1974) is
founded on marketplace longevity and commercial availability in ad-
joining marketplaces west of the Cascade Mountain range in Wa-
shington, Oregon, northern California, and southwestern British Co-
lumbia, Canada. This sort and grade represent high quality logs which
when milled are converted into high-quality lumber (Haynes and Fight,
2004). Production of Douglas-fir logs for sale to regional lumber mills in
the grade of 2-Sawmill is competitive and favored by many log buyers
(RISI, 2017).

1.3. Competitive timber markets

Log prices have both a regional and a very intense local dimension,
reflecting the fluid structure in commodity value relationships existing
in timber harvesting costs, timber log transaction value, wood products,
and forestland markets. While variations in log prices are linked to
supply factors, major determinant moves to the demand side: log and
timber prices are strongly influenced by derived demand for lumber
and other wood products (Haim et al., 2014; FAO, 2009).

Forecasting competitive log prices frustrates forestland owners who
may not be involved in perpetual log marketing negotiations. Even
when the log seller is a qualified agent of the timber owner, competitive
market price forecasting is still complicated by imperfect knowledge.

1.4. Delivered log prices

Non-volume weighted delivered log price records presented in this
analysis were purchased from RISI loglines (2017) for monthly prices
from 1989 through 2010, then from 2011 through 2019 they were
acquired from the WaDNR (2019). Conversion of these nominal prices
into real prices is made using the Producer Price Index (PPI) values
provided by the Bureau of Labor Statistics (BLS, 2019) and are stated in
October 2019 real terms, using PPI data published 14 November 2019
(Fig. 1, Fig. 2, Fig. 3).1

Commodity market price migrations often follow probabilistically
distributed temporal patterns, where return to base-price levels is
governed by discrete probability distributions (Heaney, 2006). Dis-
crete-time commodity price series have been extensively considered,
yielding the quantitative approach to making time-series predictions.
Commodity price data are often found within the realm of upper and
lower market price parameters, confining the measurements to non-
negative values, as determined by derived demand pricing of ultimate

1 Real-prices in this manuscript and displayed on all figures represent
201910, meaning the year 2019 and the month 10 (October).
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consumer products, such as lumber, veneer, and wood fiber (Prestemon
et al., 2018). These parameters create discrete-value expectations,
bound within the scope of market parameters, even when interrupted
by macroeconomic price disruptions.

Long-term price changes occur, and they can be predictable (Russell
and Taylor, 2018). Major timber management firms are likely to have
in-house analysts who make timber commodity price predictions,

sometimes based on sophisticated econometric modeling. But typical
small or medium sized forestland owners, and most public forestland
managers, may not have the resources to support a dedicated analytics
unit to track and predict delivered log prices in their market(s).

Fig. 1. Douglas-fir grade, 2-Sawmill sort, nominal and real delivered log prices, Puget Sound market (1989–2019).

Fig. 2. Douglas-fir 2-Sawmill delivered log prices 1989–2025 in April 2019 real terms with RPA Forecast tool price predictions.
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1.5. Real price movements

Commodity price forecasting begins by observing past prices linked
with economic forces embedded in the macroeconomy, where prices
are influenced by the interaction of supply and demand. Log real price
equilibrium implies that supply and demand factors consistently and
efficiently interact. Long running economic relationships are funda-
mentally influenced by consumer behavioral patterns, weakening strict
cause and effect, or supply and demand responses, even in efficient
competitive markets.

Macroeconomic forces exert commodity transaction influences
within nations and between international trading partners (Carbaugh,
2015). In the USA, when an economic recession happens, it is ulti-
mately declared by the federal economic authority (NBER, 2017). Re-
cession events are often displayed on economic graphs as vertical grey
bars (Fig. 2, Fig. 3) showing the time-span of economic recession
events. A period of recovery, often considered an economic expansion,
begins after the recession concludes.

Commodity real price devaluation can happen synchronously with
recession events, but this is not obligatory. Economic expansion and
recession interact with land use policy changes, demographic shifts, and
international competitive market forces to shape real commodity price
changes. These price changes over time can be lumped into three ca-
tegories: 1) seasonal, 2) shocks and random noise, or 3) shifts and
trends (Alagidede, 2009).

Seasonal price fluctuations include price swings associated with
annual home construction season demand effects on lumber prices, and
thus timber prices (derived demand). Long-duration timber harvest
contract lengths mean that seasonality effects are often muted in these
markets even though prices are often negotiated daily (Bowers, 2014).

Shocks and random noise are non-patterned, generally un-
predictable, one-time or short-term price changes. Timber market
random noise includes recognizable price appreciation and devalua-
tion, stemming from transitory mill inventory changes, or abrupt trade
policy adjustments (Perry, 2006).

A market shock pattern was seen in Puget Sound delivered log

market prices instigated by a significant change in lumber trade policies
when USA trade tariffs/duties were imposed in 2017, specifically
against Canada lumber (Buongiorno and Johnston, 2018). Delivered
Douglas-fir 2-Sawmill logs were traded at $639/MBF ($655/MBF real)
in June 2017, as the USA tariff was imposed on Canada lumber (Fig. 1).
Prices peaked in February 2018 at $834/MBF ($831/MBF real), then
followed a downward price devaluation to $576/MBF ($569/MBF real)
in December 2018. The real price climb, peak and devaluation is seen
graphically as a symmetrical chevron shape spanning thirty-one months
(June 2016 through December 2018) (Fig. 2).

The distinction between random noise and price shock is one of
degree, and the boundary between the two can be hazy (Kondor et al.,
2014).

Shifts and trends are driven by longer running, fundamental
changes in the economy, they are one-time changes in underlying fac-
tors; more fundamental and persistent in their consequences they are
different from shocks. Trends are formed in response to long-term shifts
such as population growth or consistent modernization technology
changes (Parr-Rud, 2012). Trends and shifts are easily observable in
retrospect, but often hard to predict for the future.

Price predictions presented in this paper have been created within
interactions of all three price interruption movements, often happening
simultaneously as commodity price disruption events unfold.

1.6. Price cycles

Specific commodity price patterns, in response to disruption events,
are revealed through market data price cycles. The ability to recognize
price-shock events as opposed to market disruption episodes aids the
validity of prediction horizons. Real price forecasts presented, rely on
mathematical structure and thereby uniformity in price prediction
models (Manzan, 2007).

Fundamentally, price prediction models attempt stochastic system
anticipation. Price predictions are destined to be disrupted by un-
predictable shocks and random noise: although monthly prices may
spike above or below a predicted cycle trajectory, they ultimately revert

Fig. 3. Douglas-fir 2-Sawmill, Prediction Interval statistical differences between stochastic prices and the RPA Forecast tool price predictions.
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to the real monthly price cycle, if market adjustment factors remain
consistent. Increases in a commodity's real price are referred to as price
appreciation, and real price decrease as price devaluation, to distin-
guish them from the broader macroeconomic terms of inflation and
deflation.

Price forecasting can be analyzed through various algorithms, sta-
tistical and graphical techniques (Guidolin and Ono, 2006). Generally,
forestland owners (including federal, state, tribal, industrial, and non-
industrial private forestland owners) are price takers in delivered log
markets (Hyde, 2012). One landowner usually lacks market supply
dominance to dictate prices to buyers.

2. Materials and methods: arranging Markov-chain predictions

This process evaluates delivered Douglas-fir 2-Sawmill log real
prices in the Puget Sound region of western Washington, USA. The
approach applied at the core of the RPA Forecast tool formula de-
monstrates the veracity of the “Markov-chain with memory predictive
model” for log prices viewed as stochastic events.

Price predictions begin by examining information contained in the
history of a market's delivered log prices. Armstrong (2001) re-
commends using as much historic data as can be assembled to increase
robustness of projection horizons. The method proposed here has two
initial steps. In step one, the analyst examines a specific (sort and grade)
delivered log real price history through a sufficiently long time horizon
to identify the price series' disruption event's “initiation date and real
value” and the event's “turning point date and real value”. In the second
step, these observations are converted to real price forecasts using the
RPA Forecast tool.

2.1. Models

The Markov-chain of order random-walk and real price return to
baseline levels is modeled through a mathematical formula. Market
cycles begin with an economic disruption of the status-quo: equilibrium
prices may move higher or lower than anticipated prices, but the dis-
ruption will be more systemic as compared to price shocks discussed
earlier. The driving variables of this model hinge on the magnitude of
the real price disruption event and the longevity of the price destabi-
lization incident: hence, its manipulation by broad-based macro-
economic factors.

2.2. Determining significant real price disruption events

As an intuitive guide of practice, real price appreciation or deva-
luation events that leave a period of real price stability to eclipse
competitive market price by 50% in real terms and takes longer than
12 months to peak or trough, can be considered as a potential new price
disruption event. Within these conditions, real price return to the level
of real price stability can be predicted by the RPA Forecast Tool sce-
nario.

2.2.1. Initiation point
Competitive real prices within the commodity market should be

established for a period of consistent real price stability not less than 4
consecutive months, longer is better. Real prices in this period of price
stability should present within a range of about 5%. These conditions
define the relatively stable price initiation point.

2.2.2. Turning point
The appreciation peak or devaluation trough should record the real

price and date of the event. Generally, these are single point incidents
where an extreme is reached to signal the beginning of return to the
stable initiation price.

It is under these conditions that price recovery using the RPA
Forecast Tool can be best applied. Recognition of real price stability and

market disruption event significance are fundamentally heuristic skills.

3. Results: forecast tool

3.1. Delivered log real price 1992–94 cycle disruption

In the western Washington Puget Sound delivered log market, a
price disruption event initiated in July 1992, when competitive market
price of Douglas-fir 2-Sawmill grade logs was $417/MBF nominal (RISI,
2017) ($701/MBF real) (Fig. 1). A price appreciation event initiated
and continued through January 1994 when prices peaked at $704/MBF
nominal ($1173/MBF real). This created a 1-year 6-month real price
appreciation event.

Putting these price events into context of the aforementioned ana-
lysis criteria, the starting point value has been time-weighted based on
four months of prices preceding and including the July 1992 price point
(April through July) (Formula 1). This approach applies the view of
Baier et al. (1999) when determining Markov-chain initiation price
memory. A.C. Harvey (1990, 25) made recommendations to consider
“putting more weight on the most recent observations”. Formula 1
numerator sums fractional-weights, creating a time-weighted average
price. While calculating a time-weighted average price is not obligatory
to this analysis technique, it recognizes the importance of establishing
the initial equilibrium real price level that will serve as the Markov-
chain random-walk base level and the ultimate cycle's return price.

Formula 1. Time-weighted initiation real price.
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⎝
⎜

⎡

⎣
⎢ × ⎤

⎦
⎥

⎞

⎠
⎟

= =

IP d Price d( ) / ( )t
t i

n

t t
t

n

t
$

1 (1)

where:
d1 = 0.60, d2 = 0.70, d3 = 0.80, d4 = 0.90.
Real Pricet for [t = 1 (April 1992)] through [t = 4 (July 1992)]
=$720, $704, $735, $701 (real)
In this market and for this commodity, initiation time-weighted real

price is calculated at $715/MBF (Formula 2), using the Formula 1
technique.

Formula 2. Time-weighted, 1992–94 cycle's initiation-point real
price.

=

⎡
⎣⎢

× + ×
× + ×

⎤
⎦⎥

+ + +
=IP MBF

(0.60 720) (0.70 705)
(0.80 735) (0.90 701)
(0.60 0.70 0.80 0.90)

$715/t
$

(2)

The turning-point nominal price in this market cycle was captured
at $704/MBF ($1173/MBF real) in January 1994, as prices reached the
disruption's apex value. The real price appreciation incident of Douglas-
fir 2-Sawmill logs in the 1992–94 disruption event initiated at $701/
MBF (Formula 2) with the turning point real price ($1173/MBF), is seen
in comparative real price appreciation between the time-bounded
points (Formula 3). Real values for this specific commodity during this
1.5-year price appreciation event, reveal a 39.15% per year price ap-
preciation rate for this commodity in this economic disruption event
(Formula 4).

Formula 3. Price appreciation or devaluation rate for a commodity.

= ⎡

⎣
⎢ − ⎤

⎦
⎥

RPA
yr

TP
IP

1t

t

$

$
LNV

(3)

Where:
RPA

yr = Real Price Appreciation/devaluation rate per year
LNV = the change in years between the starting date and turning

point date
TPt$= Turning-point real price
IPt$ = Initiation-point real price (Formula 2)
Formula 4. Real price appreciation rate: July 1992 to January 1994

(using Formula 3).

W.E. Schlosser Forest Policy and Economics 113 (2020) 102114

5



= − = =RPA
yr year1 0.3915 39.15%/MBF

MBF

$1173

$715
1.50

(4)

3.2. Delivered log real price 2006–09 cycle disruption

A subsequent market cycle disruption initiated in July 2006 when
the price of Douglas-fir 2-Sawmill logs was $595/MBF nominal ($708/
MBF real) (Fig. 2). This was identified as the starting point of a 2.92-
year devaluation event that turned in June 2009 when the nominal
price reached $358/MBF ($408/MBF real).

The initiation-date 4-month time-weighted real prices for the
April–July 2006 period were $702, $714, $717, and $708/MBF, to
generate the time-weighted initiation real price (Formula 1) of $711/
MBF (Formula 5).

Formula 5. Time-weighted, 2006–09 cycle's initiation-point real
price.

=

⎡
⎣⎢

× + ×
× + ×

⎤
⎦⎥

+ + +
=IP MBF

(0.60 702) (0.70 714)
(0.80 717) (0.90 708)
(0.60 0.70 0.80 0.90)

$711/t
$

(5)

Real price devaluation cycle of Douglas-fir 2-Sawmill logs, using the
2006–09 guiding values is revealed in comparative real price deva-
luation between the price points (Formula 3). Real-values for this spe-
cific commodity during this 2.92-year event, exposes a 17.29% per year
devaluation rate (Formula 6).

Formula 6. Real price devaluation rate: July 2005 to June 2009
(using Formula 3).

= − = − = −RPA
yr year1 0.1729 17.29%/MBF

MBF

$408

$711
2.92

(6)

When a commodity price increases in real terms, as it did in the
1992–94 disruption event (Formula 4), it is called a Real Price Appre-
ciation. When the real prices drop, as they did in the 2006–09 cycle
disruption event (Formula 6), it is called a Real Price Devaluation.
Often, irrespective of whether it is appreciation or devaluation, the
“RPA” title is applied using a negative value indicator “-” when it de-
values.

Cycle disruption events analyzed indicate event patterns; additional
considerations must be given to make price predictions following initial
disruption events. Next, we examine market recovery segment of these
cycles, which takes longer to unfold in time than its initial phase.

3.3. Real price appreciation forecast tool

This mathematical model (Formula 7) demonstrates a hyperbolic
price recovery trajectory applicable to this timber commodity price
profile (Barndorff-Nielsen, 1977). Cycle disruptions recover prices
along trajectories progressing at a declining rate of change moving from
the turning-point price to the initial real price level. The initial dis-
ruption and price recovery trajectories are not linear, and they are not
symmetrical: price recovery takes longer then the initial disruption
period.

Formula 7. RPA Forecast tool formula.

⎜ ⎟= × ⎧
⎨⎩

+ ⎛
⎝

⎡
⎣

⎤
⎦

× × ⎞
⎠

⎫
⎬⎭

⎡
⎣

− × ⎤
⎦{ }PF IP RPA

yr t1 2t t
t

LNV$ $ 1 ( {ln(2)})

(7)

where:
PFt$: RPA adjusted commodity real price forecast determined for

time point “t”
IPt$ = Cycle initiation real price (Formula 1)
RPA

yr : Calculated RPA rate using date specific real price (Formula 3)
LNV= Longevity duration from initiation date to turning-point date

(Formula 3)
t = Number of years from cycle initiation date to the date of price

prediction
These components give enunciation of the Markov-chain random-

walk with memory prediction model's hyperbolic price recovery tra-
jectory.

3.4. Initiation/turning-point

The cycle's initiation real price (Formula 1), IPt$, is the anchor
which signifies the random-walk initiation and its return to the real
price baseline level. The return to baseline price levels is founded in
random-walk theories (Moosa and Burns, 2014), where economic
smoothing has been applied. The furthest right side of Formula 7,

⎡⎣
− ⎤⎦×{ }2 1 t

LNV( {ln(2)}) reduces to “0” by 2027 (after 21 years) in the

2006–09 event example (Formula 8) and will consistently reduce to “0”
in all applications given sufficiently extended in time horizons. This
portion of Formula 7, when combined with the remainder of multi-
plicative components, achieves IPt$ and therefore the return to initia-
tion real price.

3.5. RPA/yr and LNV term

The recovery path to the baseline price level is dictated by the se-
verity of the RPA event and its duration in time, LNV (Formula 3), as
real prices pivot to reverse the appreciation or devaluation incident.
Event severity can be considered in terms of longevity exceeding
12 months. Simultaneously observing real price appreciation or deva-
luation exceeding 50% in the time elapsed can be used to identify the
event as a commodity's real price disruption event.

3.6. Taylor series

The natural log of 2 {ln(2)}, placed in the denominator of the ex-
ponent to the number two (2) and added to one (1), gives steady dis-
ruption and recovery features to the RPA Forecast tool formula. Used in
the Taylor series and subsequently applied by many (Duistermaat and
Kolk, 2010), the application of {ln(2)} in this formula introduces a
continuous compounding feature in order to recover the path to an
original price level. Thereby, the return to the initial real price level is
extended in time compared to the time elapsed during the initial phase
of the disruption event.

3.7. Time forecast extent (t)

Modification of the time (t) variable (Formula 7), ushers price
predictions to future dates. It is first multiplicative to the {RPA/yr}
variable, and second, it is in the numerator of the value-reducing ex-
ponent of a constant (2). When ‘t’ is a large number, the variable trig-
gers this far right-side portion of the exponent's numerator to approach
zero simultaneously resulting in its base (2×) approaching zero. As the
far right-side of the clause is multiplicative of this feature (t), it also
approaches zero and is summed with one (1), leading the entire cycle to
revert to its baseline real price level: mean reverting Markov-chain.

4. Discussion

The RPA Forecast tool (Formula 7), being consistent with a multi-
variant discrete-time Markov-chain format relies in its design on some
critical independent variables. There are four embedded variables and
one equation modifier (Formula 7), arrays of PPI and log market price
data to create real value predictions made here.

4.1. Price forecasting

This price forecast model (Formula 7), can be used to predict
commodity price cycle values at time-specific cycle dates, but will not
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predict isolated price shocks, random noise, or seasonal fluctuations in
competitive markets: it is applicable when predicting the underlying
real price cycle as it recovers from price disruptions on a path to initial
baseline level. Real price values diverting from this predicted path can
be considered to determine if they are the result of shocks or random
noise, or if cycle patterns are an indication of a new price cycle taking
effect.

This conversion process (Formula 7) predicts future real prices from
the date used to establish the cycle matching year and month “t”
(Fig. 2). The July 1992 to January 1994 price disruption event displays
how the RPA Forecast tool prediction seeks market price equilibrium
through time. Return to real price base level ($715/MBF) took ap-
proximately 7 years (July 1999) to reacquire 95% of the real price level
($752/MBF), and 10 years (July 2002) to reacquire 99% of the real
price level ($722/MBF) (Fig. 2). Several stochastic market price shock
patterns are observed peaking exchange prices above and troughing
below the RPA Forecast tool trend.

The trend line display (Fig. 2) was clipped at December 2005 for the
purposes of clearing it for the next real price disruption event in 2006.
The 1992–94 real price prediction forecast could have been extended
further, but it fundamentally ends when a new commodity real price
disruption event occurs. The RPA Forecast tool real price trend-line will
asymptotically approach a horizontal line as real price forecasts are
extended.

The 2006–09 disruption event's initiation time-weighted real value
(IPt$) was $711/MBF (Formula 5). The time from initiation to a future
date (“t”), is projected 14 years to forecast this commodity's real price
in July 2020: $682/MBF (Formula 8). This forecast price is approxi-
mately 96% of the initial base level projected by the RPA Forecast tool.

Formula 8. RPA price conversion of 2006–09 cycle disruption to
July 2020 (Formula 7).

= × + − × × − ×PF $711 {1 ( 0.1729 14.0 2 )}14.0
$ [1 [14.0/(2.92 {ln(2)})]] (8)

= $ MBF682/

Real price forecasting from the 2006–09 disruption event displays
(Fig. 2, Fig. 3) extend to 2025. The aforementioned return to baseline
real price level ($711/MBF) will have attained 99% of equilibrium real
price by 2025.

4.2. Forecast performance measures

The RPA Forecast tool (Formula 7) is not a regression analysis
technique. It serves as an equation, computing price forecasts as a best
fit approximation of delivered log market stochastic prices. Comparing
on a monthly basis actual competitive market real prices with predicted
trend line values gives insight to forecast accuracy. Time-series data,
such as competitive market price data recorded at monthly intervals,
showing non-stationary behavior with shocks, random noise, season-
ality, shifts and trends, can be examined through the Box-Jenkins (Box
and Jenkins, 1976) Autoregressive Integrated Moving Average
(ARIMA) analyses (Adhikari and Agrawal, 2013) (Table 1).

A prediction interval (PI) estimate for each observed forecast
(monthly) is graphically presented to describe forecast accuracy as
observed since 1992, and as predicted through 2025 (Fig. 3). PI esti-
mates involve a different, but conceptually similar type of probability
statement from that implied by the more familiar confidence interval,
which is traditionally applied to interval estimates for fixed but un-
known parameters, such as regression analysis horizons (Box and
Pierce, 1970).

ARIMA performance measures of efficiency and potential bias use
traditional techniques when applied to price forecasting. The Mean
Forecast Error (MFE) is a measure of the average deviation of forecasted
values from the prices recorded monthly in the market, with minimum
bias achieved when its value is as close to zero as possible. The Mean
Absolute Error (MAE), also known as the Mean Absolute Deviation

(MAD), measures the average absolute deviation of RPA Forecast tool to
monthly marketplace values. The Mean Squared Error (MSE) empha-
sizes the deviation of total forecast error measures. MSE gives an overall
measure of the amount of error occurring during forecasts (Adhikari
and Agrawal, 2013).

PIs are broader as compared to confidence intervals, but both rely
on the Student's t-statistic (Formula 9). Multiplication of the MSE by the
variance estimate of each forecast amount contributes to the broader PI
horizon (Formula 10). When creating PI segments, the square root of
the sum of MSE and standard error (se) components convey the overall
error of each segment analyzed and serves as a scaling factor when
applied to Student's t-statistic tests of significance (Pardoe et al., 2018).
PI horizons for both market disruption events are displayed using these
criteria (Fig. 3).

Formula 9. Development of prediction interval around forecasted
prices (general).

± − ×Sample estimate (t multiplier cumulative error) (9)

Formula 10. Development of prediction interval around forecasted
prices (specific).

= ± × +−t MSE seŷ [ (ŷ )]t α n p t( /2, )
2 (10)

Other common forecast measures applied to ARIMA analyses
(Table 1) provide an indication of the performance of both the ability of
the RPA Forecast tool to predict prices in this marketplace, and the
variability of this commodity's market prices. Student's t- statistic test
with corresponding PI values can be applied to evaluate how closely the
RPA Forecast tool formula follows the patterns of these stochastic real
prices, as a normal distribution (Box and Jenkins, 1976). The Student's
t-test is used here to determine if the RPA Forecast tool projections and
the stochastic real price patterns, for matching time periods, are sig-
nificantly different from each other (Mankiewicz, 2004).

4.3. 1992–94 disruption event

Application of the PI with Student's t-statistic test of the RPA
Forecast tool formula observed in the marketplace versus real price
events (Formula 10), indicates if they diverge significantly from each
other. This 159-measurement segment of the time series has a mean of
$826/MBF, and MAE of 54.41, MSE of 5027, and sub-population var-
iance (σ2) of 17,879 (Table 1).

Two tests of significance, 60% and 90% have been applied to these
data during this period (Fig. 3). All real market prices within this
market disruption event prediction were distributed within the 90% PI
of the RPA Forecast tool. Simultaneously, approximately 89% (144 out

Table 1
Performance measures for Douglas-fir 2-Sawmill log price predictions, ex-
pressed in October 2019 real terms.

Forecast performance measures 1992–94 disruption 2006–09 disruption

MFE: Mean Forecast Error, a.k.a.
Forecast Bias

16.7058 34.2889

MAE: Mean Absolute Error, or MAD:
Mean Absolute Deviation

54.4127 53.1196

MPE: Mean Percentage Error 1.1234 5.1622
MAPE: Mean Absolute Percentage

Error
6.3950 8.5890

SSE: Sum of Squared Error 799,300 699,001
MSE: Mean Squared Error 5027 4369
SMSE: Signed Mean Squared Error 2767 3371
RMSE: Root Mean Squared Error 70.90 66.10
NMSE: Normalized Mean Squared

Error
0.2812 0.5401

Theil's U Statistics 1.037 × 10−04 1.928 × 10−04

Number of Samples (n) 159 160
Sub-Population Mean (x)̄ $826 $597
Sub-Population Variance (σ2) 17,879 8088
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of 162) real market prices were distributed within the 60% PI.

4.4. 2006–09 disruption event

This 160-measurement time-series segment has a mean of $597/
MBF real, MAE of 53.12, MSE of 4369, and sub-population variance
(σ2) of 8088 (Table 1). All stochastic real prices have been distributed
within the 90% PI of the RPA Forecast tool predictions (Formula 10).
During this disruption event, approximately 14% (23 out of 160) sto-
chastic market real prices have been recorded above the 60% PI
(Fig. 3). Only one observed market real price dropped marginally below
the 60% PI in December 2018.

As of October 2019, this market disruption event passed through
13.25 years to recapture approximately 95% of the real price baseline
level. In July 2025 (19 years into this cycle) real prices are expected to
approximate 99% of the projected base-price level at $704/MBF.

4.5. Prognostications

It is reasonable to assume that other significant market disruptions
will be witnessed in this market before the return to base price level is
settled. Such an event may be a technological advance of timber har-
vesting, lumber milling, home construction, building structure en-
gineering, or it might come as new land use regulations changing
supply patterns. Allen et al., (2002, 309) point out that “almost all
economic relationships are behavioral rather than technical”. It is
possible that a new cycle, instigated as behavioral (Lane, 2017) or
technical changes (Hicks, 1932), will be introduced before the current
cycle's base-line real price is reacquired.

When developing highly elaborate econometric forecast models of
commodity price patterns, some researchers have separated vast arrays
of potential independent variables into dozens or hundreds of si-
multaneous regression analysis algorithms to predict ultimate price
effects on dependent commodity subjects. Zellner (1992) recognized
the danger of over-complicating analysis rigor with what he called the
KISS principle (Keep It Sophisticatedly Simple), while urging others to
follow the “law of parsimony” (Soklakov, 2002). Decision makers are
guided to seek simpler theories to explain phenomena as being the
preferable approach to more complex and convoluted explanations
(Baker, 2016). Independent variable parsimony has been the guiding
theme while developing the Real Price Appreciation Forecast tool for-
mula.

The RPA Forecast tool is not designed to precisely predict causal
variables: it predicts neither monthly PPI values, nor changes in log
demand or supply, nor the underlying demand for housing, nor interest
rate changes. Monthly updates applied to these data arrays are limited
to delivered log prices expressed nominally to be modified using an-
other monthly updated variable, PPI values, allowing real price ar-
ticulation in current terms.

The Markov-chain with random walk and return to base-level
principles have fully supported the internal logic of the presented ap-
proach. Round log sellers can use these forecasts with current price data
to contextualize their decision-making process based on the forecast
price matrix and decide if it is time to sell their standing timber, or if
holding it in anticipation of climbing prices is warranted. Timberland
valuation analysts (appraisers) and financial officers are better assisted
if they possess techniques to confidently project growing timber com-
modity values in unison with highly developed forest biometrician
prognoses of merchandised timber volume.

4.6. Domestic and international market implications

Delivered log price forecasting has historically been elusive due to
log market behavior unpredictability. The RPA Forecast tool results are
expressed in real terms to apply to growing timber assets, referencing
their financial value in sync with biometric growth and yield prognoses.

This allows broad projected data fields extrapolated from these initial
settings, to develop optimal harvest timing combinations.

Asset valuation is engaged through many forms of competitive
market interactions found in local, domestic, and international market
transactions. The RPA Forecast tool is an instrumental asset valuation
application used to predict commodity price trends, extended beyond
only current day transactions to capture migrating real commodity
prices into the future. Price prediction trends extend into near- and mid-
term forecasts, creating reserve price indicator horizons (Rosenkranz
and Schmitz, 2007) where practitioners can consider their operational
time value of money pressures.

While timber log markets transact at local and regional scales, these
expand to competitive market forces across international markets. All
timber is grown as single trees, assembled as timber stands. Timber
stands accumulate to discrete properties which can be transacted be-
tween people, companies, organizations, and governments. Competitive
market round log buyers and sellers use asset valuation protocols to
anticipate transactable commodity prices and derivative forestland
property value. Forestland value builds from timber log production
possibilities of each timber stand where growing tree volume is ex-
pressed by forest biometricians around the world (Wykoff et al., 1982).

While these timber volume predictions are expressed with some-
times acute accuracy, the competitive market value of logs has been less
predictable, especially when extended into time horizons passing an-
nual periods. Commercial forestland asset value is topic of investigation
by land appraisers (USPAP, 2018; IVCS, 2017), investment executives
(Heaney, 2006), and forestland managers (Hyde, 2012). This price
prediction mechanism provides financial insights to marketplace per-
formance. As a policy tool for administrators, this reaches into taxation
considerations, land use restrictions, employment levels across sectors,
and financial returns to publicly owned forestlands. Commercial tim-
berland owners will use these data to set asset valuation parameters and
derivative stock prices, establish long- and short-term prices for timber
log sale contracts, and schedule employment level predictions.

Application of the RPA Forecast tool where logs are transacted en-
ables users to confidently predict short- and mid-term competitive
market real prices.
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